TY - JOUR
T1 - Benchmark Study of Alkane Molecular Chains
AU - Van Veen, Frederik H.
AU - Ornago, Luca
AU - Van Der Zant, Herre S.J.
AU - El Abbassi, Maria
PY - 2022
Y1 - 2022
N2 - Alkanes serve an important role as benchmark system in molecular electronics. However, a large variation in the conductance values is reported in the literature. To better understand these fluctuations, in this study we measure large molecular data sets (up to 100 000 breaking traces) of a series of alkanes with different lengths and anchoring groups using the mechanically controlled break junction (MCBJ) technique. Employing an unsupervised learning algorithm, we investigate both the time evolution and the distance dependence of the measured traces. For all the molecules considered, we have been able to identify the single-molecule conductance value for the fully stretched molecular configuration. For alkanedithiols, the corresponding extracted β decay constant of 1.05 ± 0.08 per CH2group agrees well with literature values. In the case of the stronger thiol bonding, additional peaks in the conductance histograms are found, suggesting the formation of molecular junctions containing a single molecule plus additional gold/molecule unit(s). The results shine light on the dispersion in reported conductance values and show that the evolution of the molecule as a function of stretching and time contains crucial information in determining the molecular junction configuration in MCBJs.
AB - Alkanes serve an important role as benchmark system in molecular electronics. However, a large variation in the conductance values is reported in the literature. To better understand these fluctuations, in this study we measure large molecular data sets (up to 100 000 breaking traces) of a series of alkanes with different lengths and anchoring groups using the mechanically controlled break junction (MCBJ) technique. Employing an unsupervised learning algorithm, we investigate both the time evolution and the distance dependence of the measured traces. For all the molecules considered, we have been able to identify the single-molecule conductance value for the fully stretched molecular configuration. For alkanedithiols, the corresponding extracted β decay constant of 1.05 ± 0.08 per CH2group agrees well with literature values. In the case of the stronger thiol bonding, additional peaks in the conductance histograms are found, suggesting the formation of molecular junctions containing a single molecule plus additional gold/molecule unit(s). The results shine light on the dispersion in reported conductance values and show that the evolution of the molecule as a function of stretching and time contains crucial information in determining the molecular junction configuration in MCBJs.
UR - http://www.scopus.com/inward/record.url?scp=85131521245&partnerID=8YFLogxK
U2 - 10.1021/acs.jpcc.1c09684
DO - 10.1021/acs.jpcc.1c09684
M3 - Article
AN - SCOPUS:85131521245
SN - 1932-7447
VL - 126
SP - 8801
EP - 8806
JO - Journal of Physical Chemistry C
JF - Journal of Physical Chemistry C
IS - 20
ER -