Benchmarking of hardware-efficient real-time neural decoding in brain-computer interfaces

Paul Hueber, Guangzhi Tang, Manolis Sifalakis, Hua Peng Liaw, Aurora Micheli, Nergis Tomen, Yao Hong Liu*

*Corresponding author for this work

Research output: Contribution to journalArticleScientificpeer-review

75 Downloads (Pure)

Abstract

Designing processors for implantable closed-loop neuromodulation systems presents a formidable challenge owing to the constrained operational environment, which requires low latency and high energy efficacy. Previous benchmarks have provided limited insights into power consumption and latency. However, this study introduces algorithmic metrics that capture the potential and limitations of neural decoders for closed-loop intra-cortical brain-computer interfaces in the context of energy and hardware constraints. This study benchmarks common decoding methods for predicting a primate’s finger kinematics from the motor cortex and explores their suitability for low latency and high energy efficient neural decoding. The study found that ANN-based decoders provide superior decoding accuracy, requiring high latency and many operations to effectively decode neural signals. Spiking neural networks (SNNs) have emerged as a solution, bridging this gap by achieving competitive decoding performance within sub-10 ms while utilizing a fraction of computational resources. These distinctive advantages of neuromorphic SNNs make them highly suitable for the challenging closed-loop neural modulation environment. Their capacity to balance decoding accuracy and operational efficiency offers immense potential in reshaping the landscape of neural decoders, fostering greater understanding, and opening new frontiers in closed-loop intra-cortical human-machine interaction.

Original languageEnglish
Article number024008
Number of pages17
Journal Neuromorphic Computing and Engineering
Volume4
Issue number2
DOIs
Publication statusPublished - 2024

Keywords

  • brain computer interfaces
  • closed-loop neuromodulation
  • neural decoding
  • neuromorphic computing
  • spiking neural networks

Fingerprint

Dive into the research topics of 'Benchmarking of hardware-efficient real-time neural decoding in brain-computer interfaces'. Together they form a unique fingerprint.

Cite this