Abstract
Since every flight ends in a landing and every landing is a potential crash, deceleration during landing is one of the most critical flying maneuvers. Here we implement a recently-discovered insect visual-guided landing strategy in which the divergence of optical flow is regulated in a step-wise fashion onboard a quadrotor for the task of visual servoing. This approach was shown to be a powerful tool for understanding challenges encountered by visually-guided flying systems. We found that landing on a relatively small target requires mitigation of the noise with adaptive low-pass filtering, while compensation for the delays introduced by this filter requires open-loop forward accelerations to switch from divergence setpoint. Both implemented solutions are consistent with insect physiological properties. Our study evaluates the challenges of visual-based navigation for flying insects. It highlights the benefits and feasibility of the switching divergence strategy that allows for faster and safer landings in the context of robotics.
Original language | English |
---|---|
Article number | 036014 |
Number of pages | 14 |
Journal | Bioinspiration & Biomimetics: learning from nature |
Volume | 20 |
Issue number | 3 |
DOIs | |
Publication status | Published - 2025 |