TY - JOUR
T1 - Boundary Layer Flashback Model for Hydrogen Flames in Confined Geometries including the Effect of Adverse Pressure Gradient
AU - Björnsson, Ólafur H.
AU - Klein, Sikke A.
AU - Tober, Joeri
PY - 2021
Y1 - 2021
N2 - The combustion properties of hydrogen make premixed hydrogen-air flames very prone to boundary layer flashback. This paper describes the improvement and extension of a boundary layer flashback model from Hoferichter et al. (2017, "Prediction of Confined Flame Flashback Limits Using Boundary Layer Separation Theory," ASME J. Eng. Gas Turbines Power, 139(2), p. 021505) for flames confined in burner ducts. The original model did not perform well at higher preheat temperatures and overpredicted the backpressure of the flame at flashback by 4-5×. By simplifying the Lewis number-dependent flame speed computation and by applying a generalized version of Stratford's flow separation criterion (Stratford, 1959, "The Prediction of Separation of the Turbulent Boundary Layer," J. Fluid Mech., 5(1), p. 1), the prediction accuracy is improved significantly. The effect of adverse pressure gradient flow on the flashback limits in 2 deg and 4 deg diffusers is also captured adequately by coupling the model to flow simulations and taking into account the increased flow separation tendency in diffuser flow. Future research will focus on further experimental validation and direct numerical simulations to gain better insight into the role of the quenching distance and turbulence statistics.
AB - The combustion properties of hydrogen make premixed hydrogen-air flames very prone to boundary layer flashback. This paper describes the improvement and extension of a boundary layer flashback model from Hoferichter et al. (2017, "Prediction of Confined Flame Flashback Limits Using Boundary Layer Separation Theory," ASME J. Eng. Gas Turbines Power, 139(2), p. 021505) for flames confined in burner ducts. The original model did not perform well at higher preheat temperatures and overpredicted the backpressure of the flame at flashback by 4-5×. By simplifying the Lewis number-dependent flame speed computation and by applying a generalized version of Stratford's flow separation criterion (Stratford, 1959, "The Prediction of Separation of the Turbulent Boundary Layer," J. Fluid Mech., 5(1), p. 1), the prediction accuracy is improved significantly. The effect of adverse pressure gradient flow on the flashback limits in 2 deg and 4 deg diffusers is also captured adequately by coupling the model to flow simulations and taking into account the increased flow separation tendency in diffuser flow. Future research will focus on further experimental validation and direct numerical simulations to gain better insight into the role of the quenching distance and turbulence statistics.
UR - http://www.scopus.com/inward/record.url?scp=85102979964&partnerID=8YFLogxK
U2 - 10.1115/1.4048566
DO - 10.1115/1.4048566
M3 - Article
AN - SCOPUS:85102979964
VL - 143
JO - Journal of Engineering for Gas Turbines and Power
JF - Journal of Engineering for Gas Turbines and Power
SN - 0742-4795
IS - 6
M1 - 061003
ER -