## Abstract

We introduce a distributionally robust minimium mean square error estimation model with a Wasserstein ambiguity set to recover an unknown signal from a noisy observation. The proposed model can be viewed as a zero-sum game between a statistician choosing an estimator—that is, a measurable function of the observation—and a fictitious adversary choosing a prior—that is, a pair of signal and noise distributions ranging over independent Wasserstein balls—with the goal to minimize and maximize the expected squared estimation error, respectively. We show that, if the Wasserstein balls are centered at normal distributions, then the zero-sum game admits a Nash equilibrium, by which the players’ optimal strategies are given by an affine estimator and a normal prior, respectively. We further prove that this Nash equilibrium can be computed by solving a tractable convex program. Finally, we develop a Frank–Wolfe algorithm that can solve this convex program orders of magnitude faster than state-of-the-art general-purpose solvers. We show that this algorithm enjoys a linear convergence rate and that its direction-finding subproblems can be solved in quasi-closed form.

Original language | English |
---|---|

Pages (from-to) | 1-37 |

Journal | Mathematics of Operations Research |

Volume | 48 |

Issue number | 1 |

DOIs | |

Publication status | Published - 2023 |

### Bibliographical note

Green Open Access added to TU Delft Institutional Repository 'You share, we take care!' - Taverne project https://www.openaccess.nl/en/you-share-we-take-careOtherwise as indicated in the copyright section: the publisher is the copyright holder of this work and the author uses the Dutch legislation to make this work public.

## Keywords

- affine estimator
- distributionally robust optimization
- minimum mean square error estimation
- Wasserstein distance