Bulk viscosity of CO2 from Rayleigh-Brillouin light scattering spectroscopy at 532 nm

Yuanqing Wang, Wim Ubachs, Willem Van De Water

Research output: Contribution to journalArticleScientificpeer-review

23 Citations (Scopus)
56 Downloads (Pure)

Abstract

Rayleigh-Brillouin scattering spectra of CO 2 were measured at pressures ranging from 0.5 to 4 bars and temperatures from 257 to 355 K using green laser light (wavelength 532 nm, scattering angle of 55.7°). These spectra were compared to two line shape models, which take the bulk viscosity as a parameter. One model applies to the kinetic regime, i.e., low pressures, while the second model uses the continuum, hydrodynamic approach and takes the rotational relaxation time as a parameter, which translates into the bulk viscosity. We do not find a significant dependence of the bulk viscosity with pressure or temperature. At pressures where both models apply, we find a consistent value of the ratio of bulk viscosity over shear viscosity η bs = 0.41 ± 0.10. This value is four orders of magnitude smaller than the common value that is based on the damping of ultrasound and signifies that in light scattering only relaxation of rotational modes matters, while vibrational modes remain "frozen."

Original languageEnglish
Article number154502
Number of pages10
JournalJournal of Chemical Physics
Volume150
Issue number15
Publication statusPublished - 2019

Fingerprint

Dive into the research topics of 'Bulk viscosity of CO2 from Rayleigh-Brillouin light scattering spectroscopy at 532 nm'. Together they form a unique fingerprint.

Cite this