TY - JOUR
T1 - Catch me if you can
T2 - capturing microbial community transformation by extracellular DNA using Hi-C sequencing
AU - Calderon Franco, D.
AU - van Loosdrecht, Mark C.M.
AU - Abeel, T.E.P.M.F.
AU - Weissbrodt, D.G.
PY - 2023
Y1 - 2023
N2 - The transformation of environmental microorganisms by extracellular DNA is an overlooked mechanism of horizontal gene transfer and evolution. It initiates the acquisition of exogenous genes and propagates antimicrobial resistance alongside vertical and conjugative transfers. We combined mixed-culture biotechnology and Hi-C sequencing to elucidate the transformation of wastewater microorganisms with a synthetic plasmid encoding GFP and kanamycin resistance genes, in the mixed culture of chemostats exposed to kanamycin at concentrations representing wastewater, gut and polluted environments (0.01–2.5–50–100 mg L−1). We found that the phylogenetically distant Gram-negative Runella (102 Hi-C links), Bosea (35), Gemmobacter (33) and Zoogloea (24) spp., and Gram-positive Microbacterium sp. (90) were transformed by the foreign plasmid, under high antibiotic exposure (50 mg L−1). In addition, the antibiotic pressure shifted the origin of aminoglycoside resistance genes from genomic DNA to mobile genetic elements on plasmids accumulating in microorganisms. These results reveal the power of Hi-C sequencing to catch and surveil the transfer of xenogenetic elements inside microbiomes.
AB - The transformation of environmental microorganisms by extracellular DNA is an overlooked mechanism of horizontal gene transfer and evolution. It initiates the acquisition of exogenous genes and propagates antimicrobial resistance alongside vertical and conjugative transfers. We combined mixed-culture biotechnology and Hi-C sequencing to elucidate the transformation of wastewater microorganisms with a synthetic plasmid encoding GFP and kanamycin resistance genes, in the mixed culture of chemostats exposed to kanamycin at concentrations representing wastewater, gut and polluted environments (0.01–2.5–50–100 mg L−1). We found that the phylogenetically distant Gram-negative Runella (102 Hi-C links), Bosea (35), Gemmobacter (33) and Zoogloea (24) spp., and Gram-positive Microbacterium sp. (90) were transformed by the foreign plasmid, under high antibiotic exposure (50 mg L−1). In addition, the antibiotic pressure shifted the origin of aminoglycoside resistance genes from genomic DNA to mobile genetic elements on plasmids accumulating in microorganisms. These results reveal the power of Hi-C sequencing to catch and surveil the transfer of xenogenetic elements inside microbiomes.
KW - Hi-C sequencing
KW - Mixed cultures
KW - Antibiotic resistance
KW - Transformation
KW - Plasmids
UR - http://www.scopus.com/inward/record.url?scp=85158087456&partnerID=8YFLogxK
U2 - 10.1007/s10482-023-01834-z
DO - 10.1007/s10482-023-01834-z
M3 - Article
SN - 0003-6072
VL - 116
SP - 667
EP - 685
JO - Antonie van Leeuwenhoek, International Journal of General and Molecular Microbiology
JF - Antonie van Leeuwenhoek, International Journal of General and Molecular Microbiology
IS - 7
ER -