Cause of inaccuracies in the Padé approximant of the Born series for strong electromagnetic scattering problems

J.B.P. de Graaff*, T.A. van der Sijs, H.P. Urbach, O. El Gawhary

*Corresponding author for this work

Research output: Contribution to journalArticleScientificpeer-review

Abstract

The Born series applied to the Lippmann-Schwinger equation is a straightforward method for solving optical scattering problems, which however diverges except for very weak scatterers. Replacing the Born series by Padé approximants is a solution of this problem. However, in some cases it is rather difficult to obtain an accurate Padé approximant. In this paper we aim to understand the cause by studying the scattering by a cylinder. We find that there is a strong connection between eigenvalues of the Lippmann-Schwinger operator that are close to the real axis, the occurrence of a near-resonance, and the problematic behavior of the Padé approximant. The determination of these eigenvalues provides a general method to obtain, for any given geometry, materials for which near-resonances occur.
Original languageEnglish
Article number033506
Number of pages8
JournalPhysical Review A
Volume110
Issue number3
DOIs
Publication statusPublished - 2024

Bibliographical note

Green Open Access added to TU Delft Institutional Repository 'You share, we take care!' - Taverne project https://www.openaccess.nl/en/you-share-we-take-care
Otherwise as indicated in the copyright section: the publisher is the copyright holder of this work and the author uses the Dutch legislation to make this work public.

Fingerprint

Dive into the research topics of 'Cause of inaccuracies in the Padé approximant of the Born series for strong electromagnetic scattering problems'. Together they form a unique fingerprint.

Cite this