TY - JOUR
T1 - Chanoclavine synthase operates by an NADPH-independent superoxide mechanism
AU - Chen, Chun Chi
AU - Yu, Zhi Pu
AU - Liu, Ziwei
AU - Hagedoorn, Peter Leon
AU - Schmitz, Rob Alexander
AU - Liu, Aokun
AU - Huang, Jian Wen
AU - Guo, Rey Ting
AU - Gao, Shu Shan
AU - More Authors, null
PY - 2025
Y1 - 2025
N2 - More than ten ergot alkaloids comprising both natural and semi-synthetic products are used to treat various diseases1,2. The central C ring forms the core pharmacophore for ergot alkaloids, giving them structural similarity to neurotransmitters, thus enabling their modulation of neurotransmitter receptors3. The haem catalase chanoclavine synthase (EasC) catalyses the construction of this ring through complex radical oxidative cyclization4. Unlike canonical catalases, which catalyse H2O2 disproportionation5,6, EasC and its homologues represent a broader class of catalases that catalyse O2-dependent radical reactions4,7. We have elucidated the structure of EasC by cryo-electron microscopy, revealing a nicotinamide adenine dinucleotide phosphate (reduced) (NADPH)-binding pocket and a haem pocket common to all haem catalases, with a unique homodimeric architecture that is, to our knowledge, previously unobserved. The substrate prechanoclavine unprecedentedly binds in the NADPH-binding pocket, instead of the previously suspected haem-binding pocket, and two pockets were connected by a slender tunnel. Contrary to the established mechanisms, EasC uses superoxide rather than the more generally used transient haem iron–oxygen complexes (such as compounds I, II and III)8,9, to mediate substrate transformation through superoxide-mediated cooperative catalysis of the two distant pockets. We propose that this reactive oxygen species mechanism could be widespread in metalloenzyme-catalysed reactions.
AB - More than ten ergot alkaloids comprising both natural and semi-synthetic products are used to treat various diseases1,2. The central C ring forms the core pharmacophore for ergot alkaloids, giving them structural similarity to neurotransmitters, thus enabling their modulation of neurotransmitter receptors3. The haem catalase chanoclavine synthase (EasC) catalyses the construction of this ring through complex radical oxidative cyclization4. Unlike canonical catalases, which catalyse H2O2 disproportionation5,6, EasC and its homologues represent a broader class of catalases that catalyse O2-dependent radical reactions4,7. We have elucidated the structure of EasC by cryo-electron microscopy, revealing a nicotinamide adenine dinucleotide phosphate (reduced) (NADPH)-binding pocket and a haem pocket common to all haem catalases, with a unique homodimeric architecture that is, to our knowledge, previously unobserved. The substrate prechanoclavine unprecedentedly binds in the NADPH-binding pocket, instead of the previously suspected haem-binding pocket, and two pockets were connected by a slender tunnel. Contrary to the established mechanisms, EasC uses superoxide rather than the more generally used transient haem iron–oxygen complexes (such as compounds I, II and III)8,9, to mediate substrate transformation through superoxide-mediated cooperative catalysis of the two distant pockets. We propose that this reactive oxygen species mechanism could be widespread in metalloenzyme-catalysed reactions.
UR - http://www.scopus.com/inward/record.url?scp=86000352105&partnerID=8YFLogxK
U2 - 10.1038/s41586-025-08670-3
DO - 10.1038/s41586-025-08670-3
M3 - Article
AN - SCOPUS:86000352105
SN - 0028-0836
JO - Nature
JF - Nature
M1 - 9613090
ER -