TY - JOUR
T1 - Characterisation and Application of Bio‐Inspired Hybrid Composite Sensors for Detecting Barely Visible Damage under Out‐of‐Plane Loadings
AU - Tabatabaeian, Ali
AU - Mohammadi, Reza
AU - Harrison, Philip
AU - Fotouhi, Mohammad
PY - 2024
Y1 - 2024
N2 - Traditional inspection methods often fall short in detecting defects or damage in fibre-reinforced polymer (FRP) composite structures, which can compromise their performance and safety over time. A prime example is barely visible impact damage (BVID) caused by out-of-plane loadings such as indentation and low-velocity impact that can considerably reduce the residual strength. Therefore, developing advanced visual inspection techniques is essential for early detection of defects, enabling proactive maintenance and extending the lifespan of composite structures. This study explores the viability of using novel bio-inspired hybrid composite sensors for detecting BVID in laminated FRP composite structures. Drawing inspiration from the colour-changing mechanisms found in nature, hybrid composite sensors composed of thin-ply glass and carbon layers are designed and attached to the surface of laminated FRP composites exposed to transverse loading. A comprehensive experimental characterisation, including quasi-static indentation and low-velocity impact tests alongside non-destructive evaluations such as ultrasonic C-scan and visual inspection, is conducted to assess the sensors’ efficacy in detecting BVID. Moreover, a comparison between the two transverse loading types, static indentation and low-velocity impact, is presented. The results suggest that integrating sensors into composite structures has a minimal effect on mechanical properties such as structural stiffness and energy absorption, while substantially improving damage visibility. Additionally, the influence of fibre orientation of the sensing layer on sensor performance is evaluated, and correlations between internal and surface damage are demonstrated.
AB - Traditional inspection methods often fall short in detecting defects or damage in fibre-reinforced polymer (FRP) composite structures, which can compromise their performance and safety over time. A prime example is barely visible impact damage (BVID) caused by out-of-plane loadings such as indentation and low-velocity impact that can considerably reduce the residual strength. Therefore, developing advanced visual inspection techniques is essential for early detection of defects, enabling proactive maintenance and extending the lifespan of composite structures. This study explores the viability of using novel bio-inspired hybrid composite sensors for detecting BVID in laminated FRP composite structures. Drawing inspiration from the colour-changing mechanisms found in nature, hybrid composite sensors composed of thin-ply glass and carbon layers are designed and attached to the surface of laminated FRP composites exposed to transverse loading. A comprehensive experimental characterisation, including quasi-static indentation and low-velocity impact tests alongside non-destructive evaluations such as ultrasonic C-scan and visual inspection, is conducted to assess the sensors’ efficacy in detecting BVID. Moreover, a comparison between the two transverse loading types, static indentation and low-velocity impact, is presented. The results suggest that integrating sensors into composite structures has a minimal effect on mechanical properties such as structural stiffness and energy absorption, while substantially improving damage visibility. Additionally, the influence of fibre orientation of the sensing layer on sensor performance is evaluated, and correlations between internal and surface damage are demonstrated.
KW - barely visible impact damage
KW - hybrid composite sensor
KW - visual inspection
KW - bio‐inspired mechanochromic composites
UR - http://www.scopus.com/inward/record.url?scp=85202437988&partnerID=8YFLogxK
U2 - 10.3390/ s24165170
DO - 10.3390/ s24165170
M3 - Article
SN - 1424-8220
VL - 24
JO - Sensors
JF - Sensors
IS - 16
M1 - 5170
ER -