Abstract
Exploration of the local chemical space of molecular scaffolds by post-functionalization (PF) is a promising route to discover novel molecules with desired structure and function. PF with rationally chosen substituents based on known electronic and steric properties is a commonly used experimental and computational strategy in screening, design and optimization of catalytic scaffolds. Automated generation of reasonably accurate geometric representations of post-functionalized molecular scaffolds is highly desirable for data-driven applications. However, automated PF of transition metal (TM) complexes remains challenging. In this work a Python-based workflow, ChemSpaX, that is aimed at
automating the PF of a given molecular scaffold with special emphasis on TM complexes, is introduced. In three representative applications of ChemSpaX by comparing with DFT and DFT-B calculations, we show that the generated structures have a reasonable quality for use in computational screening applications. Furthermore, we show that ChemSpaX generated geometries can be used in machine learning applications to accurately predict DFT computed HOMO–LUMO gaps for transition metal complexes. ChemSpaX is open-source and aims to bolster and democratize the efforts of the scientific community towards data-driven chemical discovery.
automating the PF of a given molecular scaffold with special emphasis on TM complexes, is introduced. In three representative applications of ChemSpaX by comparing with DFT and DFT-B calculations, we show that the generated structures have a reasonable quality for use in computational screening applications. Furthermore, we show that ChemSpaX generated geometries can be used in machine learning applications to accurately predict DFT computed HOMO–LUMO gaps for transition metal complexes. ChemSpaX is open-source and aims to bolster and democratize the efforts of the scientific community towards data-driven chemical discovery.
Original language | English |
---|---|
Pages (from-to) | 8-25 |
Number of pages | 19 |
Journal | Digital Discovery |
Volume | 1 |
Publication status | Published - 2022 |
Fingerprint
Dive into the research topics of 'ChemSpaX: Exploration of chemical space by automated functionalization of molecular scaffold'. Together they form a unique fingerprint.Datasets
-
Data underlying the publication: ChemSpaX: Exploration of Chemical Space by Automated Functionalization of Molecular Scaffold
Kalikadien, A. V. (Creator), Pidko, E. A. (Creator) & Sinha, V. (Creator), TU Delft - 4TU.ResearchData, 14 Jun 2021
DOI: 10.4121/14766345
Dataset/Software: Dataset