Clarifying the relationship between redox activity and electrochemical stability in solid electrolytes

Tammo K. Schwietert, Violetta A. Arszelewska, Chao Wang, Chuang Yu, Alexandros Vasileiadis, Niek J.J. de Klerk, Jart Hageman, Yaolin Xu, Eveline van der Maas, Erik M. Kelder, Swapna Ganapathy*, Marnix Wagemaker, More Authors

*Corresponding author for this work

Research output: Contribution to journalArticleScientificpeer-review

166 Citations (Scopus)


All-solid-state Li-ion batteries promise safer electrochemical energy storage with larger volumetric and gravimetric energy densities. A major concern is the limited electrochemical stability of solid electrolytes and related detrimental electrochemical reactions, especially because of our restricted understanding. Here we demonstrate for the argyrodite-, garnet- and NASICON-type solid electrolytes that the favourable decomposition pathway is indirect rather than direct, via (de)lithiated states of the solid electrolyte, into the thermodynamically stable decomposition products. The consequence is that the electrochemical stability window of the solid electrolyte is notably larger than predicted for direct decomposition, rationalizing the observed stability window. The observed argyrodite metastable (de)lithiated solid electrolyte phases contribute to the (ir)reversible cycling capacity of all-solid-state batteries, in addition to the contribution of the decomposition products, comprehensively explaining solid electrolyte redox activity. The fundamental nature of the proposed mechanism suggests this is a key aspect for solid electrolytes in general, guiding interface and material design for all-solid-state batteries.

Original languageEnglish
Pages (from-to)428-435
Number of pages8
JournalNature Materials
Issue number4
Publication statusPublished - 2020


Dive into the research topics of 'Clarifying the relationship between redox activity and electrochemical stability in solid electrolytes'. Together they form a unique fingerprint.

Cite this