Classification of airborne laser scanning point cloud using point-based convolutional neural network

Jianfeng Zhu, Lichun Sui, Yufu Zang, He Zheng, Wei Jiang, Mianqing Zhong, Fei Ma

Research output: Contribution to journalArticleScientificpeer-review

7 Downloads (Pure)


In various applications of airborne laser scanning (ALS), the classification of the point cloud is a basic and key step. It requires assigning category labels to each point, such as ground, building or vegetation. Convolutional neural networks have achieved great success in image classification and semantic segmentation, but they cannot be directly applied to point cloud classification because of the disordered and unstructured characteristics of point clouds. In this paper, we design a novel convolution operator to extract local features directly from unstructured points. Based on this convolution operator, we define the convolution layer, construct a convolution neural network to learn multi-level features from the point cloud, and obtain the category label of each point in an end-to-end manner. The proposed method is evaluated on two ALS datasets: the International Society for Photogrammetry and Remote Sensing (ISPRS) Vaihingen 3D Labeling benchmark and the 2019 IEEE Geoscience and Remote Sensing Society (GRSS) Data Fusion Contest (DFC) 3D dataset. The results show that our method achieves state-of-the-art performance for ALS point cloud classification, especially for the larger dataset DFC: we get an overall accuracy of 97.74% and a mean intersection over union (mIoU) of 0.9202, ranking in first place on the contest website.

Original languageEnglish
Article number444
Number of pages22
JournalISPRS International Journal of Geo-Information
Issue number7
Publication statusPublished - 2021


  • Airborne laser scanning
  • Convolutional neural network
  • Deep learning
  • Point cloud classification
  • Semantic segmentation


Dive into the research topics of 'Classification of airborne laser scanning point cloud using point-based convolutional neural network'. Together they form a unique fingerprint.

Cite this