Classification of anisotropic Triebel-Lizorkin spaces

Sarah Koppensteiner, Jordy Timo van Velthoven*, Felix Voigtlaender

*Corresponding author for this work

Research output: Contribution to journalArticleScientificpeer-review

1 Citation (Scopus)
54 Downloads (Pure)

Abstract

This paper provides a characterization of expansive matrices A∈ GL (d, R) generating the same anisotropic homogeneous Triebel–Lizorkin space F˙p,qα(A) for α∈ R and p, q∈ (0 , ∞] . It is shown that F˙p,qα(A)=F˙p,qα(B) if and only if the homogeneous quasi-norms ρA, ρB associated to the matrices A, B are equivalent, except for the case F˙p,20=Lp with p∈ (1 , ∞) . The obtained results complement and extend the classification of anisotropic Hardy spaces Hp(A)=F˙p,20(A) , p∈ (0 , 1] , in Bownik (Mem Am Math Soc 164(781):vi+122, 2003).

Original languageEnglish
Pages (from-to)1883-1923
Number of pages41
JournalMathematische Annalen
Volume389
Issue number2
DOIs
Publication statusPublished - 2023

Fingerprint

Dive into the research topics of 'Classification of anisotropic Triebel-Lizorkin spaces'. Together they form a unique fingerprint.

Cite this