TY - JOUR
T1 - Classification of right-angled Coxeter groups with a strongly solid von Neumann algebra
AU - Borst, Matthijs
AU - Caspers, Martijn
PY - 2024
Y1 - 2024
N2 - Let W be a finitely generated right-angled Coxeter group with group von Neumann algebra L(W). We prove the following dichotomy: either L(W) is strongly solid or W contains Z×F2 as a subgroup. This proves in particular strong solidity of L(W) for all non-hyperbolic Coxeter groups that do not contain Z×F2.
AB - Let W be a finitely generated right-angled Coxeter group with group von Neumann algebra L(W). We prove the following dichotomy: either L(W) is strongly solid or W contains Z×F2 as a subgroup. This proves in particular strong solidity of L(W) for all non-hyperbolic Coxeter groups that do not contain Z×F2.
KW - Group von Neumann algebras
KW - Right-angled Coxeter groups
KW - Strong solidity
UR - http://www.scopus.com/inward/record.url?scp=85199788604&partnerID=8YFLogxK
U2 - 10.1016/j.matpur.2024.06.006
DO - 10.1016/j.matpur.2024.06.006
M3 - Article
AN - SCOPUS:85199788604
SN - 0021-7824
VL - 189
JO - Journal des Mathematiques Pures et Appliquees
JF - Journal des Mathematiques Pures et Appliquees
M1 - 103591
ER -