Co-Reduction of Common Mode Noise and Loop Current of Three-Level Active Neutral Point Clamped Inverters

Jianing Wang, Xiaohui Liu, Qiang Peng, Yuanwu Xun, Shaolin Yu, Nan Jiang, Wenbo Wang, Fengze Hou

Research output: Contribution to journalArticleScientificpeer-review

4 Citations (Scopus)


The increased switching frequency and speed of silicon carbide (SiC) MOSFETs lead to higher power density of inverters, but meanwhile resulting in weak electromagnetic interference (EMI). The impedance balance technique is a good way to reduce the common mode (CM) noise by making the voltage across the line impedance stabilization network (LISN) as small as possible. However, a side effect of this technique is the generation of relatively large loop current that circulates in the inverter. It can cause additional losses and cost, which can be a factor that stops the increase of the switching frequency by SiC MOSFET. This article, for the first time, analyzes the relationship between the CM noise and loop current of the three-level active neutral point clamped (ANPC) inverter, and proposes a co-reduction method for both. First, the CM noise and loop current are clarified for the ANPC inverter, and the analytical models for both are established. The conflict between the CM noise and loop current is introduced with a specific case by the existing design method. Then a co-reduction method is proposed and elaborated, which can both suppress the CM noise and the loop current. The extra cost and volume by the proposed method are also analyzed and are negligible. The design guideline is further shown for clarity. Finally, the analysis and proposed method is validated by the experiment.
Original languageEnglish
Article number9285288
Pages (from-to)1088-1103
Number of pages16
JournalIEEE Journal of Emerging and Selected Topics in Power Electronics
Issue number1
Publication statusPublished - 2021


  • Active neutral point clamped (ANPC)
  • co-reduction method
  • common mode (CM) noise
  • electromagnetic interference (EMI)


Dive into the research topics of 'Co-Reduction of Common Mode Noise and Loop Current of Three-Level Active Neutral Point Clamped Inverters'. Together they form a unique fingerprint.

Cite this