Coherent spin-wave transport in an antiferromagnet

J. R. Hortensius, D. Afanasiev, M. Matthiesen, R. Leenders, R. Citro, A. V. Kimel, R. V. Mikhaylovskiy, B. A. Ivanov, A. D. Caviglia

Research output: Contribution to journalArticleScientificpeer-review

1 Citation (Scopus)

Abstract

Magnonics is a research field complementary to spintronics, in which the quanta of spin waves (magnons) replace electrons as information carriers, promising lower dissipation1–3. The development of ultrafast, nanoscale magnonic logic circuits calls for new tools and materials to generate coherent spin waves with frequencies as high and wavelengths as short as possible4,5. Antiferromagnets can host spin waves at terahertz frequencies and are therefore seen as a future platform for the fastest and least dissipative transfer of information6–11. However, the generation of short-wavelength coherent propagating magnons in antiferromagnets has so far remained elusive. Here we report the efficient emission and detection of a nanometre-scale wavepacket of coherent propagating magnons in the antiferromagnetic oxide dysprosium orthoferrite using ultrashort pulses of light. The subwavelength confinement of the laser field due to large absorption creates a strongly non-uniform spin excitation profile, enabling the propagation of a broadband continuum of coherent terahertz spin waves. The wavepacket contains magnons with a shortest detected wavelength of 125 nm that propagate into the material with supersonic velocities of more than 13 km s–1. This source of coherent short-wavelength spin carriers opens up new prospects for terahertz antiferromagnetic magnonics and coherence-mediated logic devices at terahertz frequencies.

Original languageEnglish
Pages (from-to)1001-1006
Number of pages6
JournalNature Physics
Volume17
Issue number9
DOIs
Publication statusPublished - 2021

Fingerprint

Dive into the research topics of 'Coherent spin-wave transport in an antiferromagnet'. Together they form a unique fingerprint.

Cite this