TY - JOUR
T1 - Combined Steam Reforming of Methane and Formic Acid To Produce Syngas with an Adjustable H2:CO Ratio
AU - Rahbari, Ahmadreza
AU - Ramdin, Mahinder
AU - Van Den Broeke, Leo J.P.
AU - Vlugt, Thijs J.H.
PY - 2018
Y1 - 2018
N2 - Syngas is an important intermediate in the chemical process industry. It is used for the production of hydrocarbons, acetic acid, oxo-alcohols, and other chemicals. Depending on the target product and stoichiometry of the reaction, an optimum (molar) ratio between hydrogen and carbon monoxide (H2:CO) in the syngas is required. Different technologies are available to control the H2:CO molar ratio in the syngas. The combination of steam reforming of methane (SRM) and the water-gas shift (WGS) reaction is the most established approach for syngas production. In this work, to adjust the H2:CO ratio, we have considered formic acid (FA) as a source for both hydrogen and carbon monoxide. Using thermochemical equilibrium calculations, we show that the syngas composition can be controlled by cofeeding formic acid into the SRM process. The H2:CO molar ratio can be adjusted to a value between one and three by adjusting the concentration of FA in the reaction feed. At steam reforming conditions, typically above 900 K, FA can decompose to water and carbon monoxide and/or to hydrogen and carbon dioxide. Our results show that cofeeding FA into the SRM process can adjust the H2:CO molar ratio in a single step. This can potentially be an alternative to the WGS process.
AB - Syngas is an important intermediate in the chemical process industry. It is used for the production of hydrocarbons, acetic acid, oxo-alcohols, and other chemicals. Depending on the target product and stoichiometry of the reaction, an optimum (molar) ratio between hydrogen and carbon monoxide (H2:CO) in the syngas is required. Different technologies are available to control the H2:CO molar ratio in the syngas. The combination of steam reforming of methane (SRM) and the water-gas shift (WGS) reaction is the most established approach for syngas production. In this work, to adjust the H2:CO ratio, we have considered formic acid (FA) as a source for both hydrogen and carbon monoxide. Using thermochemical equilibrium calculations, we show that the syngas composition can be controlled by cofeeding formic acid into the SRM process. The H2:CO molar ratio can be adjusted to a value between one and three by adjusting the concentration of FA in the reaction feed. At steam reforming conditions, typically above 900 K, FA can decompose to water and carbon monoxide and/or to hydrogen and carbon dioxide. Our results show that cofeeding FA into the SRM process can adjust the H2:CO molar ratio in a single step. This can potentially be an alternative to the WGS process.
UR - http://resolver.tudelft.nl/uuid:2a102702-03d7-4285-9a2e-55716c8ed0b1
UR - http://www.scopus.com/inward/record.url?scp=85050482313&partnerID=8YFLogxK
U2 - 10.1021/acs.iecr.8b02443
DO - 10.1021/acs.iecr.8b02443
M3 - Article
AN - SCOPUS:85050482313
SN - 0888-5885
VL - 57
SP - 10663
EP - 10674
JO - Industrial and Engineering Chemistry Research
JF - Industrial and Engineering Chemistry Research
IS - 31
ER -