Comparative study of low-cost fluoride removal by layered double hydroxides, geopolymers, softening pellets and struvite

Research output: Contribution to journalArticleScientificpeer-review

11 Downloads (Pure)

Abstract

Excessive F- in drinking water due to natural and anthropogenic activities is a serious health hazard affecting humans worldwide. In this study, a comparative assessment was made of eight mineral-based materials with advantageous structural properties for F- uptake: layered-double-hydroxides (LDHs), geopolymers, softening pellets and struvite. These materials are considered low-cost, for being either a waste or by-product, or can be locally-sourced. It can be concluded that Ca-based materials showed the strongest affinity for F- (Ca-Al-CO3 LDHs, slag-based geopolymer, softening pellets). The Langmuir adsorption capacity of Ca-Al-CO3 LDHs, slag-based geopolymer and softening pellets was observed to be 20.83, 5.23 and 1.20 mg/g, respectively. The main mechanism of F- uptake on Ca-Al-CO3 LDHs, Mg-Al-Cl LDHs, slag-based geopolymers and softening pellets was found to be sorption at low initial F- concentrations (<10 mg/L) whereas precipitation as CaF2 is proposed to play a major role at higher initial F- concentrations (>20 mg/L). Although the softening pellets had the highest Ca-content (96-97%; XRF), their dense structure and consequent low BET surface area (2–3 m2/g), resulted in poorer performance than the Ca-based LDHs and slag-based geopolymers. Nevertheless, geopolymers, as well as struvite, were not considered to be of interest for application in water treatment, as they would need modification due to their poor stability and/or F- leaching.

Original languageEnglish
Pages (from-to)1-10
Number of pages10
JournalEnvironmental Technology (United Kingdom)
DOIs
Publication statusPublished - 2021

Keywords

  • Fluoride
  • geopolymers
  • LDHs
  • softening pellets
  • struvite

Fingerprint

Dive into the research topics of 'Comparative study of low-cost fluoride removal by layered double hydroxides, geopolymers, softening pellets and struvite'. Together they form a unique fingerprint.

Cite this