TY - JOUR
T1 - Comparing the Pearson and Spearman correlation coefficients across distributions and sample sizes
T2 - A tutorial using simulations and empirical data
AU - de Winter, Joost C F
AU - Gosling, S.D.
AU - Potter, J.P.
N1 - Green Open Access added to TU Delft Institutional Repository ‘You share, we take care!’ – Taverne project https://www.openaccess.nl/en/you-share-we-take-care
Otherwise as indicated in the copyright section: the publisher is the copyright holder of this work and the author uses the Dutch legislation to make this work public.
PY - 2016
Y1 - 2016
N2 - The Pearson product-moment correlation coefficient (rp) and the Spearman rank correlation coefficient (rs) are widely used in psychological research. We compare rp and rs on 3 criteria: variability, bias with respect to the population value, and robustness to an outlier. Using simulations across low (N = 5) to high (N = 1,000) sample sizes we show that, for normally distributed variables, rp and rs have similar expected values but rs is more variable, especially when the correlation is strong. However, when the variables have high kurtosis, rp is more variable than rs. Next, we conducted a sampling study of a psychometric dataset featuring symmetrically distributed data with light tails, and of 2 Likert-type survey datasets, 1 with light-tailed and the other with heavy-tailed distributions. Consistent with the simulations, rp had lower variability than rs in the psychometric dataset. In the survey datasets with heavy-tailed variables in particular, rs had lower variability than rp, and often corresponded more accurately to the population Pearson correlation coefficient (Rp) than rp did. The simulations and the sampling studies showed that variability in terms of standard deviations can be reduced by about 20% by choosing rs instead of rp. In comparison, increasing the sample size by a factor of 2 results in a 41% reduction of the standard deviations of rs and rp. In conclusion, rp is suitable for light-tailed distributions, whereas rs is preferable when variables feature heavy-tailed distributions or when outliers are present, as is often the case in psychological research.
AB - The Pearson product-moment correlation coefficient (rp) and the Spearman rank correlation coefficient (rs) are widely used in psychological research. We compare rp and rs on 3 criteria: variability, bias with respect to the population value, and robustness to an outlier. Using simulations across low (N = 5) to high (N = 1,000) sample sizes we show that, for normally distributed variables, rp and rs have similar expected values but rs is more variable, especially when the correlation is strong. However, when the variables have high kurtosis, rp is more variable than rs. Next, we conducted a sampling study of a psychometric dataset featuring symmetrically distributed data with light tails, and of 2 Likert-type survey datasets, 1 with light-tailed and the other with heavy-tailed distributions. Consistent with the simulations, rp had lower variability than rs in the psychometric dataset. In the survey datasets with heavy-tailed variables in particular, rs had lower variability than rp, and often corresponded more accurately to the population Pearson correlation coefficient (Rp) than rp did. The simulations and the sampling studies showed that variability in terms of standard deviations can be reduced by about 20% by choosing rs instead of rp. In comparison, increasing the sample size by a factor of 2 results in a 41% reduction of the standard deviations of rs and rp. In conclusion, rp is suitable for light-tailed distributions, whereas rs is preferable when variables feature heavy-tailed distributions or when outliers are present, as is often the case in psychological research.
KW - Correlation
KW - Nonparametric versus parametric
KW - Outlier
KW - Rank transformation
UR - http://www.scopus.com/inward/record.url?scp=84983801980&partnerID=8YFLogxK
U2 - 10.1037/met0000079
DO - 10.1037/met0000079
M3 - Article
VL - 21
SP - 273
EP - 290
JO - Psychological Methods
JF - Psychological Methods
SN - 1082-989X
IS - 3
ER -