Computational fluid dynamics-based ship energy-saving technologies: A comprehensive review

Kai Wang*, Zhongwei Li, Rui Zhang, Ranqi Ma, Lianzhong Huang*, Zhuang Wang, Xiaoli Jiang

*Corresponding author for this work

Research output: Contribution to journalReview articlepeer-review

Abstract

The research on the dynamics analysis-based energy-saving technology is significant to reduce ship energy consumption and greenhouse gas emissions. The adoption of dynamics analysis theory and Computational Fluid Dynamics (CFD) approaches can achieve the optimal design and energy efficiency improvement of the ship. This research focuses on the ship energy efficiency improvement technology through CFD-based dynamics analysis, including the hull optimization design, drag reduction technology, navigation state optimization, efficient propulsion devices, energy-saving equipment, and the coupled dynamics analysis for comprehensive performance optimization. The current research and application status of ship performance optimization based on CFD approaches for energy-efficient shipping are systematically analyzed. On this basis, the challenges and problems in the application of the CFD-based energy-saving technology are discussed, and the future research works are proposed, aiming to provide references for the development of ship energy-saving technology based on CFD approaches. The analysis results show that the adoption of CFD-based dynamics analysis methods can effectively optimize the ship dynamics performance, thus reducing ship energy consumption and pollution gas emissions. In the future, the CFD-based coupled dynamics analysis should be further studied to achieve the overall performance optimization of the integrated ship-engine-propeller-appendages system under the influence of multiple complex factors, to continuously improve the ship energy efficiency, thus promoting the low-carbon development of the shipping industry.

Original languageEnglish
Article number114896
Number of pages24
JournalRenewable and Sustainable Energy Reviews
Volume207
DOIs
Publication statusPublished - 2025

Bibliographical note

Green Open Access added to TU Delft Institutional Repository 'You share, we take care!' - Taverne project https://www.openaccess.nl/en/you-share-we-take-care
Otherwise as indicated in the copyright section: the publisher is the copyright holder of this work and the author uses the Dutch legislation to make this work public.

Keywords

  • CFD approaches
  • Drag reduction technology
  • Energy-saving equipment
  • Hull optimization design
  • Low-carbon shipping
  • Navigation state optimization
  • Ship energy efficiency

Fingerprint

Dive into the research topics of 'Computational fluid dynamics-based ship energy-saving technologies: A comprehensive review'. Together they form a unique fingerprint.

Cite this