TY - JOUR
T1 - Conduction Velocity and Anisotropic Properties of Fibrillation Waves During Acutely Induced and Long-Standing Persistent AF
AU - van Schie, Mathijs S.
AU - Talib, Shmaila
AU - Knops, Paul
AU - Taverne, Yannick J.H.J.
AU - de Groot, Natasja M.S.
PY - 2024
Y1 - 2024
N2 - Background: Quantified features of local conduction heterogeneity due to pathological alterations of myocardial tissue could serve as a marker for the degree of electrical remodeling and hence be used to determine the stage of atrial fibrillation (AF). Objectives: In this study, the authors investigated whether local directional heterogeneity (LDH) and anisotropy ratio, derived from estimated local conduction velocities (CVs) during AF, are suitable electrical parameters to stage AF. Methods: Epicardial mapping (244-electrode array, interelectrode distance 2.25 mm) of the right atrium was performed during acute atrial fibrillation (AAF) (n = 25, 32 ± 11 years of age) and during long-standing persistent atrial fibrillation (LSPAF) (n = 23, 64 ± 9 years of age). Episodes of 9 ± 4 seconds of AF were analyzed. Local CV vectors were constructed to assess the degree of anisotropy. Directions and magnitudes of individual vectors were compared with surrounding vectors to identify LDH. Results: Compared with the entire AAF group, LSPAF was characterized by slower conduction (71.5 ± 6.8 cm/s vs 67.6 ± 5.6 cm/s; P = 0.037) with a larger dispersion (1.59 ± 0.21 vs 1.95 ± 0.17; P < 0.001) and temporal variability (32.0 ± 4.7 cm/s vs 38.5 ± 3.3 cm/s; P < 0.001). Also, LSPAF was characterized by more LDH (19.6% ± 4.4% vs 26.0% ± 3.4%; P < 0.001) and a higher degree of anisotropy (1.38 ± 0.07 vs 1.51 ± 0.14; P < 0.001). Compared with the most complex type of AAF (type III), LSPAF was still associated with a larger CV dispersion, higher temporal variability of CV, and larger amount of LDH. Conclusions: Increasing AF complexity was associated with increased spatiotemporal variability of local CV vectors, local conduction heterogeneity, and anisotropy ratio. By using these novel parameters, LSPAF could potentially be discriminated from the most complex type of AAF. These observations may indicate pathological alterations of myocardial tissue underlying progression of AF.
AB - Background: Quantified features of local conduction heterogeneity due to pathological alterations of myocardial tissue could serve as a marker for the degree of electrical remodeling and hence be used to determine the stage of atrial fibrillation (AF). Objectives: In this study, the authors investigated whether local directional heterogeneity (LDH) and anisotropy ratio, derived from estimated local conduction velocities (CVs) during AF, are suitable electrical parameters to stage AF. Methods: Epicardial mapping (244-electrode array, interelectrode distance 2.25 mm) of the right atrium was performed during acute atrial fibrillation (AAF) (n = 25, 32 ± 11 years of age) and during long-standing persistent atrial fibrillation (LSPAF) (n = 23, 64 ± 9 years of age). Episodes of 9 ± 4 seconds of AF were analyzed. Local CV vectors were constructed to assess the degree of anisotropy. Directions and magnitudes of individual vectors were compared with surrounding vectors to identify LDH. Results: Compared with the entire AAF group, LSPAF was characterized by slower conduction (71.5 ± 6.8 cm/s vs 67.6 ± 5.6 cm/s; P = 0.037) with a larger dispersion (1.59 ± 0.21 vs 1.95 ± 0.17; P < 0.001) and temporal variability (32.0 ± 4.7 cm/s vs 38.5 ± 3.3 cm/s; P < 0.001). Also, LSPAF was characterized by more LDH (19.6% ± 4.4% vs 26.0% ± 3.4%; P < 0.001) and a higher degree of anisotropy (1.38 ± 0.07 vs 1.51 ± 0.14; P < 0.001). Compared with the most complex type of AAF (type III), LSPAF was still associated with a larger CV dispersion, higher temporal variability of CV, and larger amount of LDH. Conclusions: Increasing AF complexity was associated with increased spatiotemporal variability of local CV vectors, local conduction heterogeneity, and anisotropy ratio. By using these novel parameters, LSPAF could potentially be discriminated from the most complex type of AAF. These observations may indicate pathological alterations of myocardial tissue underlying progression of AF.
KW - anisotropy
KW - atrial fibrillation
KW - conduction disorders
KW - conduction heterogeneity
KW - electrophysiology
KW - high-resolution epicardial mapping
KW - induced atrial fibrillation
KW - long-standing persistent atrial fibrillation
KW - remodeling
UR - http://www.scopus.com/inward/record.url?scp=85194552658&partnerID=8YFLogxK
U2 - 10.1016/j.jacep.2024.02.001
DO - 10.1016/j.jacep.2024.02.001
M3 - Article
C2 - 38752952
AN - SCOPUS:85194552658
SN - 2405-500X
VL - 10
SP - 1592
EP - 1604
JO - JACC: Clinical Electrophysiology
JF - JACC: Clinical Electrophysiology
IS - 7
ER -