Contact angle measurement for hydrogen/brine/sandstone system using captive-bubble method relevant for underground hydrogen storage

Research output: Contribution to journalArticleScientificpeer-review

7 Citations (Scopus)
22 Downloads (Pure)

Abstract

Subsurface porous formations provide large capacities for underground hydrogen storage (UHS). Successful utilization of these porous reservoirs for UHS depends on accurate quantification of the hydrogen transport characteristics at continuum (macro) scale, specially in contact with other reservoir fluids. Relative-permeability and capillary-pressure curves are among the macro-scale transport characteristics which play crucial roles in quantification of the storage capacity and efficiency. For a given rock sample, these functions can be determined if pore-scale (micro-scale) surface properties, specially contact angles, are known. For hydrogen/brine/rock system, these properties are yet to a large extent unknown. In this study, we characterize the contact angles of hydrogen in contact with brine and Bentheimer and Berea sandstones at various pressure, temperature, and brine salinity using captive-bubble method. The experiments are conducted close to the in-situ conditions, which resulted in water-wet intrinsic contact angles, about 25 to 45 degrees. Moreover, no meaningful correlation was found with changing tested parameters. We monitor the bubbles over time and report the average contact angles with their minimum and maximum variations. Given rock pore structures, using the contact angles reported in this study, one can define relative-permeability and capillary-pressure functions for reservoir-scale simulations and storage optimization.

Original languageEnglish
Article number103964
Number of pages13
JournalAdvances in Water Resources
Volume154
DOIs
Publication statusPublished - 2021

Keywords

  • Contact angle
  • Hydrogen/brine/sandstone
  • Underground hydrogen storage
  • Wettability

Fingerprint

Dive into the research topics of 'Contact angle measurement for hydrogen/brine/sandstone system using captive-bubble method relevant for underground hydrogen storage'. Together they form a unique fingerprint.

Cite this