Abstract
Cardiac T1 mapping by magnetic resonance imaging (MRI) is an important clinical tool for the diagnosis and treatment of cardiovascular diseases. In practice, involuntary cardiac and respiratory motion often results in reduced accuracy and precision in T1 estimation. Motion correction is an essential preprocessing step, however, with intensive contrast changes among baseline images, both optimization-based and deep-learning (DL)-based registration methods still struggle to estimate structural similarity between images, especially when image contrast is poor and displacement is large. In this work, we propose a novel registration metric that is highly insensitive to large contrast changes, based on modified modality independent neighborhood descriptor (mo-MIND). To accommodate severe motions, we further propose pre-deformation as an augmentation strategy at the training stage. We combine the proposed mo-MIND-based metric and the augmentation strategy in a U-Net architecture to tackle the challenges of motion correction for cardiac T1 mapping. Experimental results and ablation studies demonstrated that our method achieved improved registration performance compared to several established baselines, leading to significantly reduced T1 mapping error and improved landmark stability.
Original language | English |
---|---|
Article number | 107330 |
Number of pages | 12 |
Journal | Biomedical Signal Processing and Control |
Volume | 102 |
DOIs | |
Publication status | Published - 2025 |
Bibliographical note
Green Open Access added to TU Delft Institutional Repository 'You share, we take care!' - Taverne project https://www.openaccess.nl/en/you-share-we-take-careOtherwise as indicated in the copyright section: the publisher is the copyright holder of this work and the author uses the Dutch legislation to make this work public.
Keywords
- Augmentation
- Cardiac T1 mapping
- Image registration
- Motion correction
- MRI