Abstract
We show that by operating a scanning transmission electron microscope (STEM) with a 0.1 nm 300 kV electron beam, one can sculpt free-standing monolayer graphene with close-to-atomic precision at 600 degrees C. The same electron beam that is used for destructive sculpting can be used to image the sculpted monolayer graphene nondestructively. For imaging, a scanning dwell time is used that is about 1000 times shorter than for the sculpting. This approach allows for Instantaneous switching between sculpting and imaging and thus fine-tuning the shape of the sculpted lattice. Furthermore, the sculpting process can be automated using a script. In this way, free-standing monolayer graphene can be controllably sculpted into patterns that are predefined in position, size, and orientation while maintaining defect-free crystallinity of the adjacent lattice. The sculpting and imaging processes can be fully computer-controlled to fabricate complex assemblies of ribbons or other shapes.
Original language | English |
---|---|
Pages (from-to) | 1566-1572 |
Number of pages | 7 |
Journal | ACS Nano |
Volume | 7 |
Issue number | 2 |
DOIs | |
Publication status | Published - 2013 |