Controlling interactions between high-frequency phonons and single quantum systems using phononic crystals

Kazuhiro Kuruma*, Benjamin Pingault, Cleaven Chia, Michael Haas, Graham D. Joe, Daniel Rimoli Assumpcao, Sophie Weiyi Ding, Chang Jin, C. J. Xin, Matthew Yeh, Neil Sinclair, Marko Lončar*

*Corresponding author for this work

Research output: Contribution to journalArticleScientificpeer-review

Abstract

The ability to control phonons in solids is key in many fields of quantum science, ranging from quantum information processing to sensing. Phonons often act as a source of noise and decoherence when solid-state quantum systems interact with the phonon bath of their host matrix. In this study, we demonstrate the ability to control the phononic local density of states of the host matrix using phononic crystals and measure its positive impact on single quantum systems. We design and fabricate diamond phononic crystals with features down to around 20 nm, resulting in a high-frequency complete phononic bandgap from 50 to 70 GHz. The engineered local density of states is probed using single silicon-vacancy colour centres embedded in the phononic crystals. We observe an 18-fold reduction in the phonon-induced orbital relaxation rate of the emitters compared to bulk, thereby demonstrating that the phononic crystal suppresses spontaneous single-phonon processes. Furthermore, we show that our approach can efficiently suppress single-phonon–emitter interactions up to 20 K, allowing the investigation of multi-phonon processes in the emitters. Our results represent an important step towards the realization of efficient phonon–emitter interfaces that can be used for quantum acoustodynamics and quantum phononic networks.

Original languageEnglish
Article number15579
Number of pages7
JournalNature Physics
DOIs
Publication statusPublished - 2024

Bibliographical note

Green Open Access added to TU Delft Institutional Repository 'You share, we take care!' - Taverne project https://www.openaccess.nl/en/you-share-we-take-care
Otherwise as indicated in the copyright section: the publisher is the copyright holder of this work and the author uses the Dutch legislation to make this work public.

Fingerprint

Dive into the research topics of 'Controlling interactions between high-frequency phonons and single quantum systems using phononic crystals'. Together they form a unique fingerprint.

Cite this