Abstract
We propose a novel end-to-end method for cross-view pose estimation. Given a ground-level query image and an aerial image that covers the query's local neighborhood, the 3 Degrees-of-Freedom camera pose of the query is estimated by matching its image descriptor to descriptors of local regions within the aerial image. The orientation-aware descriptors are obtained by using a translationally equivariant convolutional ground image encoder and contrastive learning. The Localization Decoder produces a dense probability distribution in a coarse-to-fine manner with a novel Localization Matching Upsampling module. A smaller Orientation Decoder produces a vector field to condition the orientation estimate on the localization. Our method is validated on the VIGOR and KITTI datasets, where it surpasses the state-of-the-art baseline by 72% and 36% in median localization error for comparable orientation estimation accuracy. The predicted probability distribution can represent localization ambiguity, and enables rejecting possible erroneous predictions. Without re-training, the model can infer on ground images with different field of views and utilize orientation priors if available. On the Oxford RobotCar dataset, our method can reliably estimate the ego-vehicle's pose over time, achieving a median localization error under 1 meter and a median orientation error of around 1 degree at 14 FPS.
Original language | English |
---|---|
Article number | 10373898 |
Pages (from-to) | 3813-3831 |
Number of pages | 19 |
Journal | IEEE Transactions on Pattern Analysis and Machine Intelligence |
Volume | 46 |
Issue number | 5 |
DOIs | |
Publication status | Published - 2024 |
Bibliographical note
Green Open Access added to TU Delft Institutional Repository 'You share, we take care!' - Taverne project https://www.openaccess.nl/en/you-share-we-take-careOtherwise as indicated in the copyright section: the publisher is the copyright holder of this work and the author uses the Dutch legislation to make this work public.
Keywords
- aerial imagery
- camera pose estimation
- Cameras
- Cross-view matching
- Decoding
- Feature extraction
- Image retrieval
- localization
- Location awareness
- orientation estimation
- Pose estimation
- Task analysis