Cost analysis of solar thermal propulsion systems for microsatellite applications

Fiona Leverone*, Angelo Cervone, Eberhard Gill

*Corresponding author for this work

Research output: Contribution to journalArticleScientificpeer-review

16 Citations (Scopus)

Abstract

In recent years, satellite design has extended towards miniaturisation to reduce associated cost with launching and conducting space missions. Small satellites provide low-cost platforms for space missions. However, this lower cost comes at the expense of the removal of key sub-systems, such as the propulsion system, due to the small available onboard volume and mass restrictions. For this reason, small, lightweight, high-performing and affordable propulsion systems are necessary. However, there is limited research available on the comparison of propulsion technologies with regards to cost. Motivated by the above challenges the objective of this paper is to provide a comparison of propulsion technologies that are compatible with small satellites with respect to cost and application. The different propulsion systems are investigated for three mission scenarios, a small on-orbit manoeuvre, a station-keeping, and a lunar orbit transfer mission. Each system is evaluated in terms of a total figure of merit which incorporates nine variables such as propellant mass, safety, and hardware price, that affect the total cost of a propulsion system. This figure of merit is used to quantitatively compare the propulsion systems to identify cost-effective solutions as a function of various mission scenarios. Solar thermal propulsion has been proposed for small satellite applications, but information regarding the concepts are not available in a single report. Therefore, a secondary objective of this paper is to provide the reader with a review of the current status of solar thermal propulsion. An important finding of this research is the classification of propulsion systems in terms of thrust, specific impulse, cost, and application.

Original languageEnglish
Pages (from-to)90-110
Number of pages21
JournalActa Astronautica
Volume155
DOIs
Publication statusPublished - 1 Feb 2019

Keywords

  • Low-cost propulsion systems
  • Small satellites
  • Solar thermal propulsion

Fingerprint

Dive into the research topics of 'Cost analysis of solar thermal propulsion systems for microsatellite applications'. Together they form a unique fingerprint.

Cite this