TY - JOUR
T1 - Counterparty Credit Exposures for Interest Rate Derivatives using the Stochastic Grid Bundling Method
AU - Karlsson, Patrick
AU - Jain, Shashi
AU - Oosterlee, Cornelis W.
PY - 2016
Y1 - 2016
N2 - The regulatory credit value adjustment (CVA) for an outstanding over-the-counter (OTC) derivative portfolio is computed based on the portfolio exposure over its lifetime. Usually, the future portfolio exposure is approximated using the Monte Carlo simulation, as the portfolio value can be driven by several market risk-factors. For derivatives, such as Bermudan swaptions, that do not have an analytical approximation for their Mark-to-Market (MtM) value, the standard market practice is to use the regression functions from the least squares Monte Carlo method to approximate their MtM along simulated scenarios. However, such approximations have significant bias and noise, resulting in inaccurate CVA charge. In this paper, we extend the Stochastic Grid Bundling Method (SGBM) for the one-factor Gaussian short rate model, to efficiently and accurately compute Expected Exposure, Potential Future exposure and CVA for Bermudan swaptions. A novel contribution of the paper is that it demonstrates how different measures, for instance spot and terminal measure, can simultaneously be employed in the SGBM framework, to significantly reduce the variance and bias of the solution.
AB - The regulatory credit value adjustment (CVA) for an outstanding over-the-counter (OTC) derivative portfolio is computed based on the portfolio exposure over its lifetime. Usually, the future portfolio exposure is approximated using the Monte Carlo simulation, as the portfolio value can be driven by several market risk-factors. For derivatives, such as Bermudan swaptions, that do not have an analytical approximation for their Mark-to-Market (MtM) value, the standard market practice is to use the regression functions from the least squares Monte Carlo method to approximate their MtM along simulated scenarios. However, such approximations have significant bias and noise, resulting in inaccurate CVA charge. In this paper, we extend the Stochastic Grid Bundling Method (SGBM) for the one-factor Gaussian short rate model, to efficiently and accurately compute Expected Exposure, Potential Future exposure and CVA for Bermudan swaptions. A novel contribution of the paper is that it demonstrates how different measures, for instance spot and terminal measure, can simultaneously be employed in the SGBM framework, to significantly reduce the variance and bias of the solution.
KW - Bermudan Swaptions
KW - credit value adjustment (CVA)
KW - Monte Carlo Simulation
KW - stochastic grid bundling method (SGBM)
KW - XVA
UR - http://www.scopus.com/inward/record.url?scp=84984865038&partnerID=8YFLogxK
U2 - 10.1080/1350486X.2016.1226144
DO - 10.1080/1350486X.2016.1226144
M3 - Article
AN - SCOPUS:84984865038
SN - 1350-486X
VL - 23
SP - 175
EP - 196
JO - Applied Mathematical Finance
JF - Applied Mathematical Finance
IS - 3
ER -