Coupled modeling of well and reservoir for geo-energy applications

Kiarash Mansour Pour, Denis Voskov*, David Bruhn

*Corresponding author for this work

Research output: Contribution to journalArticleScientificpeer-review

17 Downloads (Pure)

Abstract

The energy transition is inevitable since approximately two-thirds of the current global GHG emissions are related to energy production. Subsurface can provide a great opportunity for innovative low-carbon energy solutions such as geothermal energy production, hydrogen storage, carbon capture, and sequestration, etc. Well and borehole operations play an important role in all these applications. In order to operate wells intelligently, there must be a robust simulation technology that captures physics and the expected production scenario. In this study, we design a numerical framework for predictive simulation and monitoring of injection and production wells based on the general multi-segment well model. In our simulation model, wells are segmented into connected control volumes similar to the finite-volume discretization of the reservoir. Total velocity serves as an additional nonlinear unknown and it is constrained by the momentum equation. Moreover, transforming nonlinear governing equations for both reservoir and well into linearized equations benefits from operator-based linearization (OBL) techniques and reduce further the computational cost of simulation. This framework was tested for several complex physical kernels including thermal compositional multiphase reactive flow and transport. The proposed model was validated using a comparison with analytic and numerical results.

Original languageEnglish
Article number211926
Number of pages11
JournalGeoenergy Science and Engineering
Volume227
DOIs
Publication statusPublished - 2023

Keywords

  • Coupled reservoir and wellbore
  • Geothermal simulation
  • Multisegmented well
  • Operator-based linearization

Fingerprint

Dive into the research topics of 'Coupled modeling of well and reservoir for geo-energy applications'. Together they form a unique fingerprint.

Cite this