TY - GEN
T1 - Cross-Domain Classification of Moral Values
AU - Liscio, Enrico
AU - Dondera, Alin E.
AU - Geadau, Andrei
AU - Jonker, Catholijn M.
AU - Murukannaiah, Pradeep K.
PY - 2022
Y1 - 2022
N2 - Moral values influence how we interpret and act upon the information we receive. Identifying human moral values is essential for artificially intelligent agents to co-exist with humans. Recent progress in natural language processing allows the identification of moral values in textual discourse. However, domain-specific moral rhetoric poses challenges for transferring knowledge from one domain to another. We provide the first extensive investigation on the effects of cross-domain classification of moral values from text. We compare a state-of-the-art deep learning model (BERT) in seven domains and four cross-domain settings. We show that a value classifier can generalize and transfer knowledge to novel domains, but it can introduce catastrophic forgetting. We also highlight the typical classification errors in cross-domain value classification and compare the model predictions to the annotators agreement. Our results provide insights to computer and social scientists that seek to identify moral rhetoric specific to a domain of discourse.
AB - Moral values influence how we interpret and act upon the information we receive. Identifying human moral values is essential for artificially intelligent agents to co-exist with humans. Recent progress in natural language processing allows the identification of moral values in textual discourse. However, domain-specific moral rhetoric poses challenges for transferring knowledge from one domain to another. We provide the first extensive investigation on the effects of cross-domain classification of moral values from text. We compare a state-of-the-art deep learning model (BERT) in seven domains and four cross-domain settings. We show that a value classifier can generalize and transfer knowledge to novel domains, but it can introduce catastrophic forgetting. We also highlight the typical classification errors in cross-domain value classification and compare the model predictions to the annotators agreement. Our results provide insights to computer and social scientists that seek to identify moral rhetoric specific to a domain of discourse.
UR - http://www.scopus.com/inward/record.url?scp=85137337849&partnerID=8YFLogxK
M3 - Conference contribution
AN - SCOPUS:85137337849
T3 - Findings of the Association for Computational Linguistics: NAACL 2022 - Findings
SP - 2727
EP - 2745
BT - Findings of the Association for Computational Linguistics
PB - Association for Computational Linguistics (ACL)
T2 - 2022 Findings of the Association for Computational Linguistics: NAACL 2022
Y2 - 10 July 2022 through 15 July 2022
ER -