Curvature of n-dimensional space curves in grey-value images

    Research output: Contribution to journalArticleScientificpeer-review

    25 Citations (Scopus)

    Abstract

    Local curvature represents an important shape parameter of space curves which are well described by differential geometry. We have developed an estimator for local curvature of space curves embedded in n-dimensional (n-D) grey-value images. There is neither a segmentation of the curve needed nor a parametric model assumed. Our estimator works on the orientation field of the space curve. This orientation field and a description of local structure is obtained by the gradient structure tensor. The orientation field has discontinuities; walking around a closed contour yields two such discontinuities in orientation. This field is mapped via the Knutsson mapping to a continuous representation; from a n-D vector to a symmetric n^2-D tensor field. The curvature of a space curve, are coordinate invariant property, is computed in this tensor field representation. An extensive evaluation shows that our curvature estimation is unbiased even in the presence of noise, independent of the scale of the object and furthermore the relative error stays small.
    Original languageUndefined/Unknown
    Pages (from-to)738-745
    Number of pages8
    JournalIEEE Transactions on Image Processing
    Volume11
    Issue number7
    Publication statusPublished - 2002

    Keywords

    • academic journal papers
    • ZX CWTS 1.00 <= JFIS < 3.00

    Cite this