Data-driven Methods to Predict the Burst Strength of Corroded Line Pipelines Subjected to Internal Pressure

Jie Cai*, Xiaoli Jiang, Yazhou Yang, Gabriel Lodewijks, Minchang Wang

*Corresponding author for this work

Research output: Contribution to journalArticleScientificpeer-review

7 Citations (Scopus)
64 Downloads (Pure)


A corrosion defect is recognized as one of the most severe phenomena for high-pressure pipelines, especially those served for a long time. Finite-element method and empirical formulas are thereby used for the strength prediction of such pipes with corrosion. However, it is time-consuming for finite-element method and there is a limited application range by using empirical formulas. In order to improve the prediction of strength, this paper investigates the burst pressure of line pipelines with a single corrosion defect subjected to internal pressure based on data-driven methods. Three supervised ML (machine learning) algorithms, including the ANN (artificial neural network), the SVM (support vector machine) and the LR (linear regression), are deployed to train models based on experimental data. Data analysis is first conducted to determine proper pipe features for training. Hyperparameter tuning to control the learning process is then performed to fit the best strength models for corroded pipelines. Among all the proposed data-driven models, the ANN model with three neural layers has the highest training accuracy, but also presents the largest variance. The SVM model provides both high training accuracy and high validation accuracy. The LR model has the best performance in terms of generalization ability. These models can be served as surrogate models by transfer learning with new coming data in future research, facilitating a sustainable and intelligent decision-making of corroded pipelines.

Original languageEnglish
Pages (from-to)115-132
JournalJournal of Marine Science and Application
Issue number2
Publication statusPublished - 2022

Bibliographical note

Green Open Access added to TU Delft Institutional Repository 'You share, we take care!' - Taverne project
Otherwise as indicated in the copyright section: the publisher is the copyright holder of this work and the author uses the Dutch legislation to make this work public.


  • Burst strength
  • Corrosion
  • Data-driven method
  • Internal pressure
  • Machine learning
  • Pipelines


Dive into the research topics of 'Data-driven Methods to Predict the Burst Strength of Corroded Line Pipelines Subjected to Internal Pressure'. Together they form a unique fingerprint.

Cite this