Abstract
In the last decade, the signal processing (SP) community has witnessed a paradigm shift from model-based to data-driven methods. Machine learning (ML) - more specifically, deep learning - methodologies are nowadays widely used in all SP fields, e.g., audio, speech, image, video, multimedia, and multimodal/multisensor processing, to name a few. Many data-driven methods also incorporate domain knowledge to improve problem modeling, especially when computational burden, training data scarceness, and memory size are important constraints.
| Original language | English |
|---|---|
| Pages (from-to) | 89-93 |
| Number of pages | 5 |
| Journal | IEEE Signal Processing Magazine |
| Volume | 40 |
| Issue number | 7 |
| DOIs | |
| Publication status | Published - 2023 |
Bibliographical note
Green Open Access added to TU Delft Institutional Repository ‘You share, we take care!’ – Taverne project https://www.openaccess.nl/en/you-share-we-take-careOtherwise as indicated in the copyright section: the publisher is the copyright holder of this work and the author uses the Dutch legislation to make this work public.