Demo abstract: A Testbed Infrastructure To Study the Impact of Temperature on WSN

Carlo Alberto Boano, Kay Römer, James Brown, Utz Roedig, Marco Antonio Zuñiga

Research output: Chapter in Book/Conference proceedings/Edited volumeConference contributionScientificpeer-review

1 Citation (Scopus)

Abstract

Temperature strongly affects the operation of integrated circuits, and its impact has been largely investigated on a device level. However, the impact of temperature variations on networks of multiple devices is far less understood and requires investigation. We aim to close this gap and analyse the impact of temperature fluctuations on low-power wireless sensor networks, a key enabling technology of pervasive computing. As we are moving forward into an era of human-centric safety-critical applications (e.g., smart health and intelligent transportation systems), it is particularly important to make sure that a networked system offers a reliable and deterministic performance despite all possible temperature changes over its deployment lifetime. In this demo, we present a testbed infrastructure based on infra-red heating lamps that allows to vary the on-board temperature of sensor nodes on a large scale in a repeatable fashion. Using this experimental infrastructure, we show the effects of temperature variations on network performance in two different ways. First, in a small-scale local testbed at PerCom, we highlight the degradation of the wireless link quality at high temperatures, and show that the performance of radio transceivers is temperature-dependent. We quantify this degradation and parametrize the dependency between temperature and link quality using the signal strength information captured between four wireless sensor nodes. Second, we connect remotely to our large-scale experimental infrastructure at TU Graz, and assess the impact of temperature variations on the performance of state-of-the-art network protocols, showing that the typical outdoor temperature fluctuations occurring during 24-hours do affect key network metrics such as throughput, delay, and lifetime.

Original languageEnglish
Title of host publication2014 IEEE International Conference on Pervasive Computing and Communication Workshops (PERCOM WORKSHOPS)
Place of PublicationPiscataway, NJ
PublisherIEEE
Pages154-156
Number of pages3
ISBN (Electronic)978-1-4799-2736-4
DOIs
Publication statusPublished - 2014
Event2014 IEEE International Conference on Pervasive Computing and Communication Workshops (Percom Workshops), 2014, Budapest, Hungary - Piscataway
Duration: 24 Mar 201428 Mar 2014

Conference

Conference2014 IEEE International Conference on Pervasive Computing and Communication Workshops (Percom Workshops), 2014, Budapest, Hungary
Period24/03/1428/03/14

Keywords

  • Temperature
  • Testbed
  • Wireless Sensor Networks

Fingerprint

Dive into the research topics of 'Demo abstract: A Testbed Infrastructure To Study the Impact of Temperature on WSN'. Together they form a unique fingerprint.

Cite this