TY - JOUR
T1 - DenseUNets with feedback non-local attention for the segmentation of specular microscopy images of the corneal endothelium with guttae
AU - Vigueras-Guillén, Juan P.
AU - van Rooij, Jeroen
AU - van Dooren, Bart T.H.
AU - Lemij, Hans G.
AU - Islamaj, Esma
AU - van Vliet, Lucas J.
AU - Vermeer, Koenraad A.
PY - 2022
Y1 - 2022
N2 - Corneal guttae, which are the abnormal growth of extracellular matrix in the corneal endothelium, are observed in specular images as black droplets that occlude the endothelial cells. To estimate the corneal parameters (endothelial cell density [ECD], coefficient of variation [CV], and hexagonality [HEX]), we propose a new deep learning method that includes a novel attention mechanism (named fNLA), which helps to infer the cell edges in the occluded areas. The approach first derives the cell edges, then infers the well-detected cells, and finally employs a postprocessing method to fix mistakes. This results in a binary segmentation from which the corneal parameters are estimated. We analyzed 1203 images (500 contained guttae) obtained with a Topcon SP-1P microscope. To generate the ground truth, we performed manual segmentation in all images. Several networks were evaluated (UNet, ResUNeXt, DenseUNets, UNet++, etc.) and we found that DenseUNets with fNLA provided the lowest error: a mean absolute error of 23.16 [cells/mm2] in ECD, 1.28 [%] in CV, and 3.13 [%] in HEX. Compared with Topcon’s built-in software, our error was 3–6 times smaller. Overall, our approach handled notably well the cells affected by guttae, detecting cell edges partially occluded by small guttae and discarding large areas covered by extensive guttae.
AB - Corneal guttae, which are the abnormal growth of extracellular matrix in the corneal endothelium, are observed in specular images as black droplets that occlude the endothelial cells. To estimate the corneal parameters (endothelial cell density [ECD], coefficient of variation [CV], and hexagonality [HEX]), we propose a new deep learning method that includes a novel attention mechanism (named fNLA), which helps to infer the cell edges in the occluded areas. The approach first derives the cell edges, then infers the well-detected cells, and finally employs a postprocessing method to fix mistakes. This results in a binary segmentation from which the corneal parameters are estimated. We analyzed 1203 images (500 contained guttae) obtained with a Topcon SP-1P microscope. To generate the ground truth, we performed manual segmentation in all images. Several networks were evaluated (UNet, ResUNeXt, DenseUNets, UNet++, etc.) and we found that DenseUNets with fNLA provided the lowest error: a mean absolute error of 23.16 [cells/mm2] in ECD, 1.28 [%] in CV, and 3.13 [%] in HEX. Compared with Topcon’s built-in software, our error was 3–6 times smaller. Overall, our approach handled notably well the cells affected by guttae, detecting cell edges partially occluded by small guttae and discarding large areas covered by extensive guttae.
UR - http://www.scopus.com/inward/record.url?scp=85136121358&partnerID=8YFLogxK
U2 - 10.1038/s41598-022-18180-1
DO - 10.1038/s41598-022-18180-1
M3 - Article
C2 - 35982194
AN - SCOPUS:85136121358
VL - 12
JO - Scientific Reports
JF - Scientific Reports
SN - 2045-2322
IS - 1
M1 - 14035
ER -