Design of compressed variable stiffness panels with steering-thickness coupling

Tulio Gomes de Paula Machado*, José Antonio Hernandes, Victor Nicoláo Capacia, Saullo Giovani Pereira Castro

*Corresponding author for this work

Research output: Chapter in Book/Conference proceedings/Edited volumeConference contributionScientificpeer-review

3 Citations (Scopus)
251 Downloads (Pure)

Abstract

Automated manufacturing techniques of composite materials such as automated fiber placement (AFP) and continuous tow shearing (CTS) can be configured to produce fibers that follow curvilinear paths, resulting in variable laminate properties that can be tailored to a large range of engineering applications. The present study focuses on the design and optimization of a wing upper skin exploring the coupled thickness build-up that is inherent to the CTS process and appears in the AFP process when continuous tows are used with an overlapping design approach. The steering-thickness coupling comes from constant-volume requirements and is an extra nonlinear constraint that poses additional challenges to the design and optimization, rendering conventional two-step approaches based on lamination parameters and total thickness ineffective. The number of longitudinal stiffeners, cross-section shape and laminate configuration are treated as design variables in a single-step optimization driven by a classical genetic algorithm. Knowing the current state of angle distributions proved to be important while calculating the coupled thickness build-up. The optimization problem is constrained by the critical linear buckling load, herein calculated using finite elements with MSC Nastran®, and by manufacturing and design constraints, such as the minimum steering radius of AFP and CTS and common design guidelines for laminated composites. The results are compared with an optimized baseline design using conventional straight-fibre laminates to quantify how the design is changed in terms of overall geometry, buckling loads and structural weight.

Original languageEnglish
Title of host publicationAIAA Scitech 2021 Forum
PublisherAmerican Institute of Aeronautics and Astronautics Inc. (AIAA)
Pages1-22
Number of pages22
ISBN (Print)9781624106095
DOIs
Publication statusPublished - 1 Jan 2021
EventAIAA Scitech 2021 Forum - Virtual/online event due to COVID-19 , Virtual, Online
Duration: 11 Jan 202121 Jan 2021

Publication series

NameAIAA Scitech 2021 Forum

Conference

ConferenceAIAA Scitech 2021 Forum
CityVirtual, Online
Period11/01/2121/01/21

Fingerprint

Dive into the research topics of 'Design of compressed variable stiffness panels with steering-thickness coupling'. Together they form a unique fingerprint.

Cite this