TY - JOUR
T1 - Designing colloidal ground-state patterns using short-range isotropic interactions
AU - Tindemans, Simon H.
AU - Mulder, Bela M.
PY - 2010/8/23
Y1 - 2010/8/23
N2 - DNA-coated colloids are a popular model system for self-assembly through tunable interactions. The DNA-encoded linkages between particles theoretically allow for very high specificity, but generally no directionality or long-range interactions. We introduce a two-dimensional lattice model for particles of many different types with short-range isotropic interactions that are pairwise specific. For this class of models, of which the DNA-coated colloids are one example, we address the fundamental question whether it is possible to reliably design the interactions so that the ground state is unique and corresponds to a given crystal structure. First, we determine lower limits for the interaction range between particles, depending on the complexity of the desired pattern and the underlying lattice. Then, we introduce a proof-of-principle "recipe" for determining the pairwise interactions that exactly satisfies this minimum criterion, and we show that it is sufficient to uniquely determine the ground state for a large class of crystal structures. Finally, we verify these results using Monte Carlo simulations.
AB - DNA-coated colloids are a popular model system for self-assembly through tunable interactions. The DNA-encoded linkages between particles theoretically allow for very high specificity, but generally no directionality or long-range interactions. We introduce a two-dimensional lattice model for particles of many different types with short-range isotropic interactions that are pairwise specific. For this class of models, of which the DNA-coated colloids are one example, we address the fundamental question whether it is possible to reliably design the interactions so that the ground state is unique and corresponds to a given crystal structure. First, we determine lower limits for the interaction range between particles, depending on the complexity of the desired pattern and the underlying lattice. Then, we introduce a proof-of-principle "recipe" for determining the pairwise interactions that exactly satisfies this minimum criterion, and we show that it is sufficient to uniquely determine the ground state for a large class of crystal structures. Finally, we verify these results using Monte Carlo simulations.
UR - http://www.scopus.com/inward/record.url?scp=77956096635&partnerID=8YFLogxK
U2 - 10.1103/PhysRevE.82.021404
DO - 10.1103/PhysRevE.82.021404
M3 - Article
AN - SCOPUS:77956096635
SN - 1539-3755
VL - 82
JO - Physical Review E - Statistical, Nonlinear, and Soft Matter Physics
JF - Physical Review E - Statistical, Nonlinear, and Soft Matter Physics
IS - 2
M1 - 021404
ER -