Detecting nighttime inversions in the interior of a Douglas fir canopy

Bart Schilperoort*, Miriam Coenders-Gerrits, César Jiménez Rodríguez, Antoon van Hooft, Bas van de Wiel, Hubert Savenije

*Corresponding author for this work

Research output: Contribution to journalArticleScientificpeer-review

12 Downloads (Pure)

Abstract

Despite the importance of forests in the water and carbon cycles, accurately measuring their contribution remains challenging, especially at night. During clear-sky nights current models and theories fail, as non-turbulent flows and spatial heterogeneity become more important. One of the standing issues is the ‘decoupling’ of the air masses in and above the canopy, where little turbulent exchange takes place, thus preventing proper measurement of atmospheric fluxes. Temperature inversions, where lower air is colder and thus more dense, can be both the cause and result of this decoupling. With Distributed Temperature Sensing (DTS) it is now possible to detect these temperature inversions, and increase our understanding of the decoupling mechanism. With DTS we detected strong inversions within the canopy of a tall Douglas Fir stand. The inversions formed in on clear-sky nights with low turbulence, and preferentially formed in the open understory. A second inversion regularly occurred above the canopy. Oscillations in this upper inversion transferred vertically through the canopy and induced oscillations in the lower inversion. We hypothesize that the inversions could form due to a local suppression of turbulent motions along the height of the canopy. This was supported by a 1-D conceptual model, which showed that a local inversion layer would always form within the canopy if the bulk inversion (over the full canopy) was strong enough. Due to the near-continuous vertical motion and specific height the inversions occur at, a very high measurement density (better than ∼2 m) and measurement frequency (>0.1 Hz) are required to detect them. Consequently, it could be possible that the observed inversions are a regular feature in similarly structured forests, but are generally not directly observed. With DTS it is possible to detect and describe these types of features, which will aid in improving our understanding of atmospheric flows over complex terrain such as forests.

Original languageEnglish
Article number108960
Number of pages14
JournalAgricultural and Forest Meteorology
Volume321
DOIs
Publication statusPublished - 2022

Keywords

  • atmospheric stability
  • canopy
  • decoupling
  • distributed temperature sensing
  • temperature inversion
  • temperature profile

Fingerprint

Dive into the research topics of 'Detecting nighttime inversions in the interior of a Douglas fir canopy'. Together they form a unique fingerprint.

Cite this