Detection of mild cognitive impairment in a community-dwelling population using quantitative, multiparametric MRI-based classification

Mark J.R.J. Bouts, Jeroen van der Grond, Meike W. Vernooij, Marisa Koini, Tijn M. Schouten, Frank de Vos, Rogier A. Feis, Anita Lechner, Wiro J. Niessen, More Authors

    Research output: Contribution to journalArticleScientificpeer-review

    2 Citations (Scopus)
    80 Downloads (Pure)

    Abstract

    Early and accurate mild cognitive impairment (MCI) detection within a heterogeneous, nonclinical population is needed to improve care for persons at risk of developing dementia. Magnetic resonance imaging (MRI)-based classification may aid early diagnosis of MCI, but has only been applied within clinical cohorts. We aimed to determine the generalizability of MRI-based classification probability scores to detect MCI on an individual basis within a general population. To determine classification probability scores, an AD, mild-AD, and moderate-AD detection model were created with anatomical and diffusion MRI measures calculated from a clinical Alzheimer's Disease (AD) cohort and subsequently applied to a population-based cohort with 48 MCI and 617 normal aging subjects. Each model's ability to detect MCI was quantified using area under the receiver operating characteristic curve (AUC) and compared with an MCI detection model trained and applied to the population-based cohort. The AD-model and mild-AD identified MCI from controls better than chance level (AUC = 0.600, p = 0.025; AUC = 0.619, p = 0.008). In contrast, the moderate-AD-model was not able to separate MCI from normal aging (AUC = 0.567, p = 0.147). The MCI-model was able to separate MCI from controls better than chance (p = 0.014) with mean AUC values comparable with the AD-model (AUC = 0.611, p = 1.0). Within our population-based cohort, classification models detected MCI better than chance. Nevertheless, classification performance rates were moderate and may be insufficient to facilitate robust MRI-based MCI detection on an individual basis. Our data indicate that multiparametric MRI-based classification algorithms, that are effective in clinical cohorts, may not straightforwardly translate to applications in a general population.

    Original languageEnglish
    Pages (from-to)2711-2722
    Number of pages12
    JournalHuman Brain Mapping
    Volume40
    Issue number9
    DOIs
    Publication statusPublished - 2019

    Keywords

    • Alzheimer's disease
    • classification
    • community-dwelling cohort
    • diffusion tensor imaging
    • machine learning
    • mild cognitive impairment
    • MRI

    Fingerprint Dive into the research topics of 'Detection of mild cognitive impairment in a community-dwelling population using quantitative, multiparametric MRI-based classification'. Together they form a unique fingerprint.

    Cite this