Determination of lower and upper bounds of predicted production from history-matched models

G. M. van Essen, S. Kahrobaei, H. van Oeveren, P. M J van Den Hof, J. D. Jansen*

*Corresponding author for this work

Research output: Contribution to journalArticleScientificpeer-review

2 Citations (Scopus)
35 Downloads (Pure)

Abstract

We present a method to determine lower and upper bounds to the predicted production or any other economic objective from history-matched reservoir models. The method consists of two steps: 1) performing a traditional computer-assisted history match of a reservoir model with the objective to minimize the mismatch between predicted and observed production data through adjusting the grid block permeability values of the model. 2) performing two optimization exercises to minimize and maximize an economic objective over the remaining field life, for a fixed production strategy, by manipulating the same grid block permeabilities, however without significantly changing the mismatch obtained under step 1. This is accomplished through a hierarchical optimization procedure that limits the solution space of a secondary optimization problem to the (approximate) null space of the primary optimization problem. We applied this procedure to two different reservoir models. We performed a history match based on synthetic data, starting from a uniform prior and using a gradient-based minimization procedure. After history matching, minimization and maximization of the net present value (NPV), using a fixed control strategy, were executed as secondary optimization problems by changing the model parameters while staying close to the null space of the primary optimization problem. In other words, we optimized the secondary objective functions, while requiring that optimality of the primary objective (a good history match) was preserved. This method therefore provides a way to quantify the economic consequences of the well-known problem that history matching is a strongly ill-posed problem. We also investigated how this method can be used as a means to assess the cost-effectiveness of acquiring different data types to reduce the uncertainty in the expected NPV.

Original languageEnglish
Pages (from-to)1061-1073
Number of pages13
JournalComputational Geosciences: modeling, simulation and data analysis
Volume20
Issue number5
DOIs
Publication statusPublished - 1 Oct 2016

Keywords

  • Computer-assisted history matching
  • Hierarchical optimization
  • Multi-objective optimization
  • Uncertainty

Fingerprint

Dive into the research topics of 'Determination of lower and upper bounds of predicted production from history-matched models'. Together they form a unique fingerprint.

Cite this