TY - JOUR
T1 - Determination of organic fluorinated compounds content in complex samples through combustion ion chromatography methods
T2 - a way to define a “Total Per- and Polyfluoroalkyl Substances (PFAS)” parameter?
AU - Idjaton, Babatoundé I.T.
AU - Togola, Anne
AU - Ghestem, Jean Philippe
AU - Kastler, Laura
AU - Bristeau, Sébastien
AU - Ronteltap, Mariska
AU - Colombano, Stéfan
AU - Devau, Nicolas
AU - Lions, Julie
AU - van Hullebusch, Eric D.
N1 - Green Open Access added to TU Delft Institutional Repository ‘You share, we take care!’ – Taverne project https://www.openaccess.nl/en/you-share-we-take-care
Otherwise as indicated in the copyright section: the publisher is the copyright holder of this work and the author uses the Dutch legislation to make this work public.
PY - 2024
Y1 - 2024
N2 - Emerging contaminants are a growing concern for scientists and public authorities. The group of per-polyfluoroalkyl substances (PFAS), known as ‘forever chemicals', in complex environmental liquid and solid matrices was analysed in this study. The development of global analytical methods based on combustion ion chromatography (CIC) is expected to provide accurate picture of the overall PFAS contamination level via the determination of extractable organic fluorine (EOF) and adsorbable organic fluorine (AOF). The obtained results may be put into perspective with other methods such as targeted analyses (LC-MS/MS). The impact of pH, the presence of dissolved organic carbon and suspended particles on AOF measurements were explored. The effectiveness of the washing step to remove adsorbed inorganic fluorine (IF) has been proven for samples containing up to 8 mgF.L−1. CIC-based methods showed good repeatability and reproducibility for the complex matrices studied. Environmental applications of these methods have been tested. AOF and EOF analyses could explain between 1 % and 23 % and 0.1 % to 2 % of total organic fluorine (TOF), respectively. The sum of PFAS compounds expressed as fluorine could explain from 0.2 % to 11 % and from 0.003 % to 5 % for AOF and EOF, respectively. These results also suggest that some fluorinated compounds are not adsorbed or extractable and/or lost by volatilisation during the application of AOF and EOF analytical procedure. These findings highlight that AOF and EOF are not entirely efficient as proxy to assess “total PFAS” for assessing environmental contamination by PFAS. However, these methods could still be applied to gain a better understanding of the sources and fate of PFAS in the environment.
AB - Emerging contaminants are a growing concern for scientists and public authorities. The group of per-polyfluoroalkyl substances (PFAS), known as ‘forever chemicals', in complex environmental liquid and solid matrices was analysed in this study. The development of global analytical methods based on combustion ion chromatography (CIC) is expected to provide accurate picture of the overall PFAS contamination level via the determination of extractable organic fluorine (EOF) and adsorbable organic fluorine (AOF). The obtained results may be put into perspective with other methods such as targeted analyses (LC-MS/MS). The impact of pH, the presence of dissolved organic carbon and suspended particles on AOF measurements were explored. The effectiveness of the washing step to remove adsorbed inorganic fluorine (IF) has been proven for samples containing up to 8 mgF.L−1. CIC-based methods showed good repeatability and reproducibility for the complex matrices studied. Environmental applications of these methods have been tested. AOF and EOF analyses could explain between 1 % and 23 % and 0.1 % to 2 % of total organic fluorine (TOF), respectively. The sum of PFAS compounds expressed as fluorine could explain from 0.2 % to 11 % and from 0.003 % to 5 % for AOF and EOF, respectively. These results also suggest that some fluorinated compounds are not adsorbed or extractable and/or lost by volatilisation during the application of AOF and EOF analytical procedure. These findings highlight that AOF and EOF are not entirely efficient as proxy to assess “total PFAS” for assessing environmental contamination by PFAS. However, these methods could still be applied to gain a better understanding of the sources and fate of PFAS in the environment.
KW - Analysis
KW - Combustion ion chromatography
KW - Environment
KW - Organic fluorine
KW - PFAS
UR - http://www.scopus.com/inward/record.url?scp=85192549494&partnerID=8YFLogxK
U2 - 10.1016/j.scitotenv.2024.172589
DO - 10.1016/j.scitotenv.2024.172589
M3 - Article
C2 - 38657803
AN - SCOPUS:85192549494
SN - 0048-9697
VL - 932
JO - Science of the Total Environment
JF - Science of the Total Environment
M1 - 172589
ER -