TY - JOUR
T1 - Development of a near-infrared Raman spectroscopy setup compatible with fluorescence-guided surgery
AU - Abbasi, Hamed
AU - Lauwerends, Lorraine J.
AU - Bakker Schut, Tom C.
AU - Santos, Inês P.
AU - Caspers, Peter J.
AU - Hardillo, Jose A.U.
AU - Koljenović, Senada
AU - Vahrmeijer, Alexander L.
AU - Baatenburg de Jong, Robert J.
AU - More Authors, null
N1 - Green Open Access added to TU Delft Institutional Repository ‘You share, we take care!’ – Taverne project https://www.openaccess.nl/en/you-share-we-take-care Otherwise as indicated in the copyright section: the publisher is the copyright holder of this work and the author uses the Dutch legislation to make this work public.
PY - 2023
Y1 - 2023
N2 - Near-infrared (NIR) fluorescence imaging using exogenous fluorescent agents provides whole-field images in real-time to assist the surgeon in the excision of a tumor. Although the method has high sensitivity, the specificity can sometimes be lower than expected. Raman spectroscopy can detect tumors with high specificity. Therefore, a combination of both techniques can be advantageous. A complication that must be addressed is that the NIR spectral region is favored by both techniques for (in vivo) tissue analysis. When fluorescence and Raman emissions spectrally overlap, it becomes challenging or impossible to detect the Raman signal. In this paper, by avoiding this overlap, we describe a Raman spectroscopy setup capable of recording high-quality Raman spectra from tissue containing NIR exogenous fluorescent agents. We identify an optimal wavelength interval (900-915 nm) for Raman excitation, which avoids both excitation of fluorescent dyes and Raman signal self-absorption by the tissue. In this way, Raman spectroscopy can be combined with the currently most-used NIR fluorescent dyes. This combined novel setup could pave the way for clinical trials benefiting from both fluorescence imaging and Raman spectroscopy to avoid positive margins in cancer surgery.
AB - Near-infrared (NIR) fluorescence imaging using exogenous fluorescent agents provides whole-field images in real-time to assist the surgeon in the excision of a tumor. Although the method has high sensitivity, the specificity can sometimes be lower than expected. Raman spectroscopy can detect tumors with high specificity. Therefore, a combination of both techniques can be advantageous. A complication that must be addressed is that the NIR spectral region is favored by both techniques for (in vivo) tissue analysis. When fluorescence and Raman emissions spectrally overlap, it becomes challenging or impossible to detect the Raman signal. In this paper, by avoiding this overlap, we describe a Raman spectroscopy setup capable of recording high-quality Raman spectra from tissue containing NIR exogenous fluorescent agents. We identify an optimal wavelength interval (900-915 nm) for Raman excitation, which avoids both excitation of fluorescent dyes and Raman signal self-absorption by the tissue. In this way, Raman spectroscopy can be combined with the currently most-used NIR fluorescent dyes. This combined novel setup could pave the way for clinical trials benefiting from both fluorescence imaging and Raman spectroscopy to avoid positive margins in cancer surgery.
UR - http://www.scopus.com/inward/record.url?scp=85153367660&partnerID=8YFLogxK
U2 - 10.1039/d3an00077j
DO - 10.1039/d3an00077j
M3 - Article
AN - SCOPUS:85153367660
SN - 0003-2654
VL - 148
SP - 2676
EP - 2682
JO - Analyst
JF - Analyst
IS - 12
ER -