Dielectric Response of Corn Leaves to Water Stress

Tim van Emmerik, Susan Steele-Dunne, J Judge, Nick van de Giesen

Research output: Contribution to journalArticleScientificpeer-review

8 Citations (Scopus)
15 Downloads (Pure)


Radar backscatter from vegetated surface is sensitive to direct backscatter from the canopy, and two-way attenuation of the signal as it travels through the canopy. Both mechanisms are affected by the dielectric properties of {the individual elements of the canopy, which are primarily a function of water content.} Leaf water content of corn can change considerably during the day and in response to water stress, and model simulations suggested that this significantly affects radar backscatter. Understanding the influence of water stress on leaf dielectric properties will give insight into how the plant water status changes in response to water stress, and how radar can be used to detect vegetation water stress. We used a microstrip line resonator to monitor the changes its resonant frequency at corn leaves, due to variations in dielectric properties. This study presents in vivo resonant frequency measurements during field experiments with and without water stress, to understand the dielectric response due to stress. The resonant frequency of the leaf around the main leaf of the stressed plant showed increasing diurnal differences. The dielectric response of the unstressed plant remained stable. This study shows the clear statistically significant effect of water stress on variations in resonant frequency at individual leaves.
Original languageEnglish
Pages (from-to)8-12
JournalIEEE Geoscience and Remote Sensing Letters
Issue number1
Publication statusE-pub ahead of print - 2016


  • Radar
  • Hydrology
  • Water stress
  • Dielectric constant
  • Maize
  • Vegetation

Fingerprint Dive into the research topics of 'Dielectric Response of Corn Leaves to Water Stress'. Together they form a unique fingerprint.

Cite this