Diffusive separation in rarefied plume interaction

Research output: Contribution to journalArticleScientificpeer-review

1 Citation (Scopus)
1 Downloads (Pure)

Abstract

In the present study, we propose the use of a light, inert carrier gas to support deposition uniformity and rate in continuous physical vapor deposition, in which closely spaced slots or nozzles are required to achieve a sufficiently high deposition rate. Interaction shocks between the emerging rarefied plumes cause undesired nonuniformities in the deposited coating. The present work evaluates the effect of adding a carrier gas on the interaction shock. We study the interaction between two sonic plumes consisting of a binary mixture, i.e., silver as coating material and helium as a light inert carrier gas, by direct simulation Monte Carlo. While the inlet Mach and Knudsen numbers were kept constant, the fraction of carrier gas was varied to single out the effect of species separation. The influence of rarefaction on species separation was also studied. Species separation produces a high carrier-gas fraction in the periphery and an accumulation of the heavier species in the jet core. The resulting change in the speed of sound alters the local expansion characteristics and, thus, shifts the shock location and weakens the shock. These phenomena intensify with the degree of rarefaction. It is shown that adding a light carrier gas increases deposition rate may enhance uniformity and reduce stray deposition.

Original languageEnglish
Article number064202
Number of pages12
JournalJournal of Vacuum Science and Technology B
Volume40
Issue number6
DOIs
Publication statusPublished - 2022

Bibliographical note

Green Open Access added to TU Delft Institutional Repository ‘You share, we take care!’ – Taverne project https://www.openaccess.nl/en/you-share-we-take-care Otherwise as indicated in the copyright section: the publisher is the copyright holder of this work and the author uses the Dutch legislation to make this work public.

Fingerprint

Dive into the research topics of 'Diffusive separation in rarefied plume interaction'. Together they form a unique fingerprint.

Cite this