Abstract
This paper presents the design of a model predictive control (MPC) for the Calais canal, located in the north of France for satisfactory management of the system. To estimate the unknown inputs/outputs arising from the uncontrolled pumps, a digital twin (DT) in the framework of a Matlab-SIC2 is used to reproduce the dynamics of the canal, and the real database corresponding to a period of three days is employed to evaluate the control strategy. The canal is characterized by two operating modes due to high and low tides. As a consequence of this, time-varying constraints on the use of gates must be considered, which leads to the design of two multiobjective control problems, one for the high tide and another for the low tide. Furthermore, a moving horizon estimation (MHE) strategy is used to provide the MPC with unmeasured states. The simulation results show that the different objectives are met satisfactorily.
Original language | English |
---|---|
Article number | 05024002 |
Number of pages | 11 |
Journal | Journal of Water Resources Planning and Management |
Volume | 150 |
Issue number | 5 |
DOIs | |
Publication status | Published - 2024 |
Bibliographical note
Green Open Access added to TU Delft Institutional Repository 'You share, we take care!' - Taverne project https://www.openaccess.nl/en/you-share-we-take-careOtherwise as indicated in the copyright section: the publisher is the copyright holder of this work and the author uses the Dutch legislation to make this work public.
Keywords
- Digital twin (DT)
- Inland waterways
- Model predictive control (MPC)
- Real database
- Unknown inputs/outputs