Direct and efficient reduction of perfluorooctanoic acid using bimetallic catalyst supported on carbon

Guanhong Liu, Meiyun Feng, Muhammad Tayyab, Jianqiu Gong, Meng Zhang*, Mingyang Yang, Kuangfei Lin

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

89 Citations (Scopus)


A variety of metal elements have exhibited strong reductive and dehalogenative capabilities for the removal of persistent organic pollutants, owing to electron transfer or electron-hole activation through various methods. Herein, a bimetallic CNi-Al2O3 structure (AlCNi) was successfully synthesized to simultaneously function as sorbent and catalyst in the reduction of perfluoroalkyl carboxylic acids (PFOA) polluted wastewater. Using a reaction period of 3 h, 98% of PFOA was removed by AlCNi through a mechanochemical stirring method and 70.43% of fluorine ions was released from PFOA anchored onto the surface of AlCNi. Both thermocatalysis and photocatalysis technologies were incorporated and compared when utilized in tandem with AlCNi to mitigate the PFOA. In addition, peroxymonosulfate (PMS) and sodium sulfite (Na2SO3) were also integrated into experiments, separately, as a strong oxidant and reductant to improve the degradation effect of PFOA. However, the degradation efficiency of both were lower than that of AlCNi, even when assisted by elevated temperatures and ultraviolet irradiation. The feasibility of employing AlCNi for PFOA degradation was further investigated at various temperature and pH conditions. The data obtained from HPLC-MS/MS, TOC, and IC with multiple characterizations of AlCNi/PFOA, proposed the predominant degradation pathways comprising adsorption, defluorination-hydroxylation, and decarboxylation. This study provides a valuable remediation method without utilizing chemical agents and special activation for PFOA by AlCNi, which can be suitable for large-scale sewage treatment applications.

Original languageEnglish
Article number125224
Number of pages11
JournalJournal of Hazardous Materials
Publication statusPublished - 2021
Externally publishedYes


  • Bimetallic catalyst
  • Electron transfer
  • Mechanical reduction
  • Perfluorooctanoic acid


Dive into the research topics of 'Direct and efficient reduction of perfluorooctanoic acid using bimetallic catalyst supported on carbon'. Together they form a unique fingerprint.

Cite this