TY - JOUR
T1 - Direct manipulation of a superconducting spin qubit strongly coupled to a transmon qubit
AU - Pita-Vidal, Marta
AU - Bargerbos, Arno
AU - Splitthoff, Lukas J.
AU - Grünhaupt, Lukas
AU - Wesdorp, Jaap J.
AU - Liu, Yu
AU - Kouwenhoven, Leo P.
AU - van Heck, Bernard
AU - Andersen, Christian Kraglund
AU - More Authors, null
N1 - Green Open Access added to TU Delft Institutional Repository ‘You share, we take care!’ – Taverne project https://www.openaccess.nl/en/you-share-we-take-care Otherwise as indicated in the copyright section: the publisher is the copyright holder of this work and the author uses the Dutch legislation to make this work public.
PY - 2023
Y1 - 2023
N2 - Spin qubits in semiconductors are a promising platform for producing highly scalable quantum computing devices. However, it is difficult to realize multiqubit interactions over extended distances. Superconducting spin qubits provide an alternative by encoding a qubit in the spin degree of freedom of an Andreev level. These Andreev spin qubits have an intrinsic spin–supercurrent coupling that enables the use of recent advances in circuit quantum electrodynamics. The first realization of an Andreev spin qubit encoded the qubit in the excited states of a semiconducting weak link, leading to frequent decay out of the computational subspace. Additionally, rapid qubit manipulation was hindered by the need for indirect Raman transitions. Here we use an electrostatically defined quantum dot Josephson junction with large charging energy, which leads to a spin-split doublet ground state. We tune the qubit frequency over a frequency range of 10 GHz using a magnetic field, which also enables us to investigate the qubit performance using direct spin manipulation. An all-electric microwave drive produces Rabi frequencies exceeding 200 MHz. We embed the Andreev spin qubit in a superconducting transmon qubit, demonstrating strong coherent qubit–qubit coupling. These results are a crucial step towards a hybrid architecture that combines the beneficial aspects of both superconducting and semiconductor qubits.
AB - Spin qubits in semiconductors are a promising platform for producing highly scalable quantum computing devices. However, it is difficult to realize multiqubit interactions over extended distances. Superconducting spin qubits provide an alternative by encoding a qubit in the spin degree of freedom of an Andreev level. These Andreev spin qubits have an intrinsic spin–supercurrent coupling that enables the use of recent advances in circuit quantum electrodynamics. The first realization of an Andreev spin qubit encoded the qubit in the excited states of a semiconducting weak link, leading to frequent decay out of the computational subspace. Additionally, rapid qubit manipulation was hindered by the need for indirect Raman transitions. Here we use an electrostatically defined quantum dot Josephson junction with large charging energy, which leads to a spin-split doublet ground state. We tune the qubit frequency over a frequency range of 10 GHz using a magnetic field, which also enables us to investigate the qubit performance using direct spin manipulation. An all-electric microwave drive produces Rabi frequencies exceeding 200 MHz. We embed the Andreev spin qubit in a superconducting transmon qubit, demonstrating strong coherent qubit–qubit coupling. These results are a crucial step towards a hybrid architecture that combines the beneficial aspects of both superconducting and semiconductor qubits.
UR - http://www.scopus.com/inward/record.url?scp=85160104792&partnerID=8YFLogxK
U2 - 10.1038/s41567-023-02071-x
DO - 10.1038/s41567-023-02071-x
M3 - Article
AN - SCOPUS:85160104792
SP - 1110
EP - 1115
JO - Nature Physics
JF - Nature Physics
SN - 1745-2473
IS - 8
ER -