Directional electron filtering at a superconductor-semiconductor interface

Daniel Breunig, Song Bo Zhang, Björn Trauzettel, T. M. Klapwijk

    Research output: Contribution to journalArticleScientificpeer-review

    4 Citations (Scopus)
    29 Downloads (Pure)


    We evaluate the microscopically relevant parameters for electrical transport of hybrid superconductor-semiconductor interfaces. In contrast to the commonly used geometrically constricted metallic systems, we focus on materials with dissimilar electronic properties like low-carrier density semiconductors combined with superconductors, without imposing geometric confinement. We find an intrinsic mode-selectivity, a directional momentum-filter, due to the differences in electronic band structure, which creates a separation of electron reservoirs each at the opposite sides of the semiconductor, while at the same time selecting modes propagating almost perpendicular to the interface. The electronic separation coexists with a transport current dominated by Andreev reflection and low elastic backscattering, both dependent on the gate-controllable electronic properties of the semiconductor.

    Original languageEnglish
    Article number165414
    Number of pages8
    JournalPhysical Review B
    Issue number16
    Publication statusPublished - 2021


    Dive into the research topics of 'Directional electron filtering at a superconductor-semiconductor interface'. Together they form a unique fingerprint.

    Cite this