Distinguishing pure histopathological growth patterns of colorectal liver metastases on CT using deep learning and radiomics: a pilot study

Martijn P.A. Starmans*, Florian E. Buisman, Michel Renckens, François E.J.A. Willemssen, Sebastian R. van der Voort, Bas Groot Koerkamp, Dirk J. Grünhagen, Wiro J. Niessen, Peter B. Vermeulen, More Authors

*Corresponding author for this work

Research output: Contribution to journalArticleScientificpeer-review

10 Downloads (Pure)

Abstract

Histopathological growth patterns (HGPs) are independent prognosticators for colorectal liver metastases (CRLM). Currently, HGPs are determined postoperatively. In this study, we evaluated radiomics for preoperative prediction of HGPs on computed tomography (CT), and its robustness to segmentation and acquisition variations. Patients with pure HGPs [i.e. 100% desmoplastic (dHGP) or 100% replacement (rHGP)] and a CT-scan who were surgically treated at the Erasmus MC between 2003–2015 were included retrospectively. Each lesion was segmented by three clinicians and a convolutional neural network (CNN). A prediction model was created using 564 radiomics features and a combination of machine learning approaches by training on the clinician’s and testing on the unseen CNN segmentations. The intra-class correlation coefficient (ICC) was used to select features robust to segmentation variations; ComBat was used to harmonize for acquisition variations. Evaluation was performed through a 100 × random-split cross-validation. The study included 93 CRLM in 76 patients (48% dHGP; 52% rHGP). Despite substantial differences between the segmentations of the three clinicians and the CNN, the radiomics model had a mean area under the curve of 0.69. ICC-based feature selection or ComBat yielded no improvement. Concluding, the combination of a CNN for segmentation and radiomics for classification has potential for automatically distinguishing dHGPs from rHGP, and is robust to segmentation and acquisition variations. Pending further optimization, including extension to mixed HGPs, our model may serve as a preoperative addition to postoperative HGP assessment, enabling further exploitation of HGPs as a biomarker.

Original languageEnglish
Pages (from-to)483-494
Number of pages12
JournalClinical and Experimental Metastasis
Volume38
Issue number5
DOIs
Publication statusAccepted/In press - 2021

Keywords

  • Biomarkers
  • Computed
  • Deep learning
  • Liver neoplasms
  • Machine learning
  • Tomography
  • X-ray

Fingerprint

Dive into the research topics of 'Distinguishing pure histopathological growth patterns of colorectal liver metastases on CT using deep learning and radiomics: a pilot study'. Together they form a unique fingerprint.

Cite this